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Abstract 

Bioinformatic analysis—such as genome assembly quality assessment, alignment summary statistics, 

relative synonymous codon usage, paired-end aware quality trimming and filtering of sequencing reads, 

file format conversion, and processing and analysis—is integrated into diverse disciplines in the 

biological sciences. Several command-line pieces of software have been developed to conduct some of 

these individual analyses; however, the lack of a unified toolkit that conducts all these analyses can be a 

barrier in workflows. To address this obstacle, we introduce BioKIT, a versatile toolkit for the UNIX 

shell environment with 40 functions, several of which were community-sourced, that conduct routine and 

novel processing and analysis of genome assemblies, multiple sequence alignments, coding sequences, 

sequencing data, and more. To demonstrate the utility of BioKIT, we assessed the quality and 

characteristics of 901 eukaryotic genome assemblies, calculated alignment summary statistics for 10 

phylogenomic data matrices, determined relative synonymous codon usage across 171 fungal genomes 

including those that use alternative genetic codes, and demonstrate that a novel metric, gene-wise relative 

synonymous codon usage, can accurately estimate gene-wise codon optimization. BioKIT will be helpful 

in facilitating and streamlining sequence analysis workflows. BioKIT is freely available under the MIT 

license from GitHub (https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-

biokit/), and the Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, 

user tutorials, and instructions for requesting new features are available online 

(https://jlsteenwyk.com/BioKIT).  
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Introduction 

Bioinformatics is the application of computational tools to process and analyze biological data, such as 

nucleotide or amino acid sequences in the form of genome assemblies, gene annotations, and multiple 

sequence alignments (Bayat, 2002). Diverse disciplines in the biological sciences rely on bioinformatic 

methods and software (Wren, 2016). Recently, researchers have acknowledged the need to consider 

diverse types of biological scientists with different levels of experience when developing software 

(Kumar and Dudley, 2007). It is also essential to implement high standards of software development that 

ensure software functionality and archival stability (Mangul, Mosqueiro, et al., 2019; Mangul, Martin, et 

al., 2019). For example, code quality can be improved by utilizing unit and integration tests, which ensure 

faithful function of code (Darriba et al., 2018). As a result, the development of effective and user-friendly 

software for diverse biologists often requires an interdisciplinary team of software engineers, biologists, 

and others. 

 

Even though numerous bioinformatic pieces of software are available, there are still several barriers to 

creating seamless and reproducible workflows (Kim et al., 2018). This issue in part stems from different 

pieces of software requiring different input file formats, being unable to account for non-standard 

biological phenomena such as the use of alternative genetic codes, or can only be executed using web 

servers or graphical user interfaces, which cannot be incorporated into high-throughput pipelines. Another 

factor is that multiple pieces of software or custom scripts are typically needed to execute different steps 

in a larger bioinformatic pipeline; for example, bioinformatic workflows often rely on one software/script 

for converting file formats, another software/script for translating sequences using standard and non-

standard genetic codes, another software/script to examine the properties of genomes or multiple 

sequence alignments, and so on. As a result, maintaining efficacious bioinformatic workflows is 

cumbersome (Kulkarni et al., 2018). Thus, the bioinformatic community would benefit from a multi-

purpose toolkit that contains diverse processing and analysis functions. 
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To address this need, we—an interdisciplinary team of software engineers, evolutionary biologists, 

molecular biologists, microbiologists, and others—developed BioKIT, a versatile toolkit with 40 

functions, several of which were community sourced, that conduct routine and novel processing and 

analysis of diverse sequence files including genome assemblies, multiple sequence alignments, protein 

coding sequences, and sequencing data (Table 1). Functions implemented in BioKIT facilitate a wide 

variety of standard bioinformatic analyses, including genome assembly quality assessment (e.g., N50, 

L50, assembly size, guanine-cytosine (GC) content, number of scaffolds, and others), the calculation of 

multiple sequence alignment properties (i.e., number of taxa, alignment length, the number of constant 

sites, the number of parsimony-informative sites, and the number of variable sites), and processing and 

analysis of protein coding sequences (e.g., translation using 26 genetic codes including user-specified 

translation tables, GC content at the first, second, and third codon positions, and relative synonymous 

codon usage). To demonstrate the utility of BioKIT, we examined the genome assembly quality of 901 

eukaryotic genomes, evaluated the properties of 10 phylogenomic data matrices, calculated relative 

synonymous codon usage in 171 fungal genomes, and estimated codon optimization in each gene from 

two Saccharomyces budding yeast species using a novel metric, gene-wise relative synonymous codon 

usage (gw-RSCU). BioKIT comes complete with common and novel functions that will help improve 

reproducibility and accessibility of diverse bioinformatic analysis and facilitate discovery in the biological 

sciences. 

 

Materials and Methods 

BioKIT is an easy-to-install command-line software that conducts diverse bioinformatic analyses in the 

UNIX programming environment. BioKIT is written in the Python programming language and has few 

dependencies, namely Biopython (Cock et al., 2009) and numPy (Van Der Walt et al., 2011). 

 

BioKIT currently has 40 functions that process and analyze sequence files such as genome assemblies, 

multiple-sequence alignments, protein coding sequences, and sequencing data (Table 1). Processing 
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functions include those that convert various file formats, subset sequence reads from FASTQ files, 

rename entries in FASTA files, and others. Analysis functions include those that trim sequence reads in 

FASTQ files according to quality and length thresholds, calculate relative synonymous codon usage, 

estimate codon optimization, and others. Similar to other software we have developed (Steenwyk et al., 

2020, 2021; Steenwyk and Rokas, 2021), we plan on continuing to develop and incorporate additional 

functions into BioKIT to meet the needs of the research community. 

 

Details about each function, their usage, tutorials, and other information such as how to request additional 

functions can be found in the online documentation (https://jlsteenwyk.com/BioKIT). To demonstrate the 

utility of BioKIT, we highlight four use-cases: (i) genome assembly quality assessment, (ii) summarizing 

properties of multiple sequence alignments, (iii) determination of relative synonymous codon usage using 

different genetic codes, and (iv) determination of a novel metric for estimation of gene-wise codon 

optimization, gene-wise relative synonymous codon usage (gw-RSCU). 

 

Genome assembly quality assessment 

Determination of genome assembly properties is essential when evaluating assembly quality (Gurevich et 

al., 2013; Hunt et al., 2013). To facilitate these analyses, the genome_assembly_metrics function in 

BioKIT calculates 14 diverse properties of genome assemblies that evaluate assembly quality and 

characteristics including: 

• assembly size: sum length of all contigs/scaffolds; 

• L50 (and L90): the number of contigs/scaffolds that make up 50% (or, in the case of L90, 90%) of the 

total length of the genome assembly; 

• N50 (and N90): the length of the contig/scaffold which, along with all contigs/scaffolds longer than or 

equal to that contig/scaffold, contain 50% (or, in the case of N90, 90%) the length of a particular genome 

assembly; 

• GC content: fraction of total bases that are either G or C; 
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• number of scaffolds: total number of contigs/scaffolds; 

• number and sum length of large scaffolds: total number and sum length of contigs/scaffolds above 500 

nucleotides in length (length threshold of a “large scaffold” can be modified by the user); and 

• frequency of nucleotides: fraction of occurrences for adenine (A), thymine, (T), G, and C nucleotides. 

 

Each metric can also be called using individual functions (e.g., the n50 function calculates the N50 of an 

assembly and the number_of_large_scaffolds function calculates the number of large scaffolds in an 

assembly). We anticipate the ability of BioKIT to summarize genome assembly properties will be helpful 

for assessing genome quality as well as in comparative studies of genome properties, such as the 

evolution of genome size and GC content (Walker et al., 2015; Shen et al., 2020). Other pieces of 

software that conduct similar analyses include QUAST, REAPR, and GenomeQC (Gurevich et al., 2013; 

Hunt et al., 2013; Manchanda et al., 2020). 

 

Processing and assessing the properties of multiple sequence alignments 

Multiple sequence alignments—the alignment of three or more biological sequences—contain a wealth of 

information. To facilitate easy use and manipulation of multiple sequence alignments, BioKIT 

implements 16 functions that process or analyze alignments including: generating consensus sequences; 

generating a position-specific score matrix (which represents the frequency of observing a particular 

amino acid or nucleotide at a specific position); recoding an alignment using different schemes, such as 

the RY-nucleotide scheme for nucleotide alignments (Woese et al., 1991; Phillips et al., 2001) or the 

Dayhoff-6, S&R-6, and KGB-6 schemes for amino acid alignments (Hrdy et al., 2004; Embley et al., 

2003; Susko and Roger, 2007; Kosiol et al., 2004); converting alignments among the following formats: 

FASTA, Clustal, MAF, Mauve, PHYLIP, PHYLIP-sequential, PHYLIP-relaxed, and Stockholm; 

extracting entries in FASTA files; removing entries from FASTA file; removing short sequences from a 

FASTA file; and others. 
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We highlight the alignment_summary function, which calculates numerous summary statistics for a 

multiple sequence alignment, a common step in many molecular evolutionary analyses (Plomion et al., 

2018; Winterton et al., 2018). More specifically, the alignment_summary function calculates: 

• alignment length: the total number of sites in an alignment; 

• number of taxa: the total number of sequences in an alignment; 

• number of parsimony-informative sites: a site in an alignment with at least two distinct nucleotides or 

amino acids that each occur at least twice; 

• number of variable sites: a site in an alignment with at least two distinct nucleotides or amino acids; 

• number of constant sites: sites with the same nucleotide or amino acid (excluding gaps); and 

• the frequency of all character states: the fraction of occurrence for all nucleotides or amino acids 

(including gap characters represented as ‘-’ or ‘?’ in an alignment. 

 

Like the genome_assembly_metrics function, each metric can be calculated individually (e.g., the 

constant_sites function calculates the number of constant sites in an alignment and the 

character_frequency function calculates the frequency of all character states). We anticipate the 

alignment_summary function will assist researchers in statistically evaluating the properties of their 

alignments. Other pieces of software that perform similar operations include AMAS (Borowiec, 2016) 

and Mesquite (Mesquite Project Team, 2014). 

 

Examining features of coding sequences including relative synonymous codon usage 

BioKIT contains multiple functions that process or analyze protein coding sequences including translating 

protein coding sequences into amino acids using one of 26 genetic codes or a user-specified translation 

table as well as determining the GC content at the first, second, and third codon positions.  

 

Here, we highlight the relative_synonymous_codon_usage function, which calculates relative 

synonymous codon usage, the ratio of the observed frequency of synonymous codons to an expected 
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frequency in which all synonymous codons are used equally (Xu et al., 2008). In this analysis, 

overrepresented codons have relative synonymous codon usage values greater than one whereas 

underrepresented codons have relative synonymous codon usage values less than one. Relative 

synonymous codon usage values of one fit the neutral expectation. The 

relative_synonymous_codon_usage function can be used with one of 26 genetic codes including user-

specified translation tables. The ability of BioKIT to account for diverse genetic codes makes it uniquely 

suitable for analyses of lineages that contain multiple genetic codes (LaBella et al., 2019; Krassowski et 

al., 2018). Other software that conduct similar analyses include DAMBE and GCUA (Xia, 2013; 

McInerney, 1998).  

 

We also highlight the gene_wise_relative_synonymous_codon_usage function, which calculates a novel 

metric, gw-RSCU, to examine biases in codon usage among individual genes encoded in a genome. More 

specifically, the gw-RSCU is calculated by determining the mean or median relative synonymous codon 

usage value for all codons in each gene based on their genome-wide values. Thus, BioKIT calculates 

relative synonymous codon usage for each codon based on codon usage in an entire set of protein coding 

genes, individually reexamines each gene and the relative synonymous codon usage value for each codon 

therein, and then determines the mean or median relative synonymous codon usage value for the 

individual gene. The formula for the mean gw-RSCU calculation is as follows: 

��– ����� �  
∑ �����
�

���

�
  

where gw-RSCUa is the gene that gw-RSCU is being calculated for, RSCUi is the relative synonmyouse 

codon usage value (calculated from all protein coding genes in a genome) for the ith codon of j codons in 

a gene, and n is the number of codons in a gene. To evaluate within-gene variation in relative 

synonymous codon usage, BioKIT also reports the standard deviation of relative synonymous codon 

usage values for each gene. Like the relative_synonymous_codon_usage function, gw-RSCU can be 

calculated using alternative genetic codes including user-specified ones. Taken together, these functions 
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can be used individually or in tandem to investigate diverse biological phenomena, including codon usage 

bias (LaBella et al., 2019; Brandis and Hughes, 2016). 

 

Implementing high standards of software development 

Archival instability is a concern for bioinformatic tools and threatens the reproducibility of bioinformatic 

research. For example, in an analysis that aimed to evaluate the “installability” of bioinformatic software, 

28% of over 36,000 bioinformatic tools failed to properly install due to implementation errors (Mangul, 

Mosqueiro, et al., 2019). To ensure archival stability of BioKIT, we implemented a previously established 

protocol (Steenwyk and Rokas, 2021; Steenwyk et al., 2020, 2021) for high standards of software 

development and design practices. More specifically, we wrote 327 unit and integration tests that ensure 

faithful functionality of BioKIT and span 95.46% of the codebase. We also implemented a continuous 

integration pipeline, which builds, packages, installs, and tests the functionality of BioKIT across Python 

versions 3.6, 3.7, 3.8, and 3.9. To accommodate diverse installation workflows, we also made BioKIT 

freely available under the MIT license across popular platforms including GitHub 

(https://github.com/JLSteenwyk/BioKIT), PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the 

Anaconda Cloud (https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). To make BioKIT more user-

friendly, we wrote online documentation, user tutorials, and instructions for requesting new features 

(https://jlsteenwyk.com/BioKIT). We anticipate our rigorous strategy to implement high standards of 

software development, coupled to our approach to facilitate easy software installation and extensive 

documentation, will address instabilities observed among many bioinformatic software and increase the 

long-term usability of BioKIT. 

 

Results and Discussion 

Genome assembly quality and characteristics among 901 eukaryotic genomes 

To demonstrate the utility of BioKIT for the examination of genome assembly quality and characteristics, 

14 diverse genome assembly metrics were determined among 901 scaffold-level haploid assemblies of 
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eukaryotic genomes, which were obtained from NCBI, and span three major classes of animals 

(Mammalia; N = 350), plants (Magnoliopsida; N = 336), and fungi (Eurotiomycetes; N = 215). Genome 

assembly properties exhibited variation both within and between the three classes (Figure 1). For 

example, fungi had the smallest average genome size of 32.71 ± 7.04 Megabases (Mbs) whereas 

mammals had the largest average genome size of 2,645.50 ± 487.48 Mbs. Extensive variation in genome 

size within each class corroborates previous findings of extreme genome size variation among eukaryotes 

(Elliott and Gregory, 2015). Variation in GC content, a genome property that has been actively 

investigated for decades (Romiguier et al., 2010; Serres-Giardi et al., 2012; Galtier et al., 2001), was 

observed among the three eukaryotic classes—animals, plants, and fungi had an average GC content of 

0.40 ± 0.04, 0.35 ± 0.04, and 0.49 ± 0.03, respectively. Lastly, there was wide variation in genome 

assembly metrics associated with continuity of assembly. For example, the average N50 values for 

animals, plants, and fungi were 12,287.64 ± 25,317.31 Mbs, 5,030.15 ± 19,358.58 Mbs, and 1,370.77 ± 

1,552.13 Mbs, respectively. Taken together, these results demonstrate BioKIT can assist researchers in 

summarizing diverse genome assembly properties, which may be helpful not only for evaluating genome 

assembly quality, but also for studying genome evolution. 

 

Properties of multiple sequence alignment from 10 phylogenomic studies 

To demonstrate the utility of BioKIT in calculating summary statistics for multiple sequence alignments, 

we calculated six properties across 10 previously published phylogenomic data matrices of amino acid 

sequences (Borowiec et al., 2015; Chen et al., 2015; Misof et al., 2014; Nagy et al., 2014; Shen et al., 

2018; X.-X. Shen, Zhou, et al., 2016; Steenwyk et al., 2019; Struck et al., 2015; Whelan et al., 2015; 

Yang et al., 2015) (Figure 2). Phylogenomic data matrices varied in the number of taxa (mean = 109.50 ± 

87.26; median = 94; max = 343; min = 36). Alignment length is associated with greater phylogenetic 

accuracy and bipartition support (X.-X. Shen, Salichos, et al., 2016); however, recent analyses suggest 

that in some instances shorter alignments that contain a wealth of informative sites (such as parsimony-

informative sites) harbor robust phylogenetic signal (Steenwyk et al., 2020). Interestingly, the longest 
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observed alignment (1,806,035 sites; Chen, Vertebrates in Figure 2) (Chen et al., 2015) contained the 

highest number of constant sites (N = 610,994), which are phylogenetically uninformative, as well as the 

highest number of variable sites (N = 1,195,041), which are phylogenetically informative (X.-X. Shen, 

Salichos, et al., 2016). In contrast to the multiple sequence alignment of vertebrate sequences, the second 

longest alignment of budding yeast sequences (1,162,805 sites; Shen, 332 Yeast in Figure 2) has few 

constant sites (N = 2,761) and many parsimony-informative (N = 1,152,145) and variable sites (N = 

1,160,044). This observation may be driven in part by the rapid rate of budding yeast evolution compared 

to animals (Shen et al., 2018). These results demonstrate BioKIT is useful in summarizing multiple 

sequence alignments. 

 

Relative synonymous codon usage in 107 budding yeast and filamentous fungi 

To demonstrate the utility of BioKIT in analyzing protein coding sequences, we calculated the relative 

synonymous codon usage of all codons in the protein coding sequences of 103 Eurotiomycetes 

(filamentous fungi) and 68 Saccharomycetes (budding yeasts) genomes obtained from the RefSeq 

database of NCBI (Figure 3). This example also demonstrates the flexibility of BioKIT to account for 

non-standard genetic codes, which are observed among some budding yeasts that use the CUG codon to 

encode a serine or alanine rather than a leucine (Krassowski et al., 2018). Hierarchical clustering of 

relative synonymous codon usage values per codon (columns in Figure 3) revealed similar patterns across 

groups of codons. For example, CUA, AUA, and GUA—three of the four codons that end in UA—were 

underrepresented in all fungi. Hierarchical clustering of relative synonymous codon usage values per 

species (rows in Figure 3) revealed filamentous fungi and budding yeasts often clustered separately. For 

example, UGA, GUG, AAC, UAC, AAG, UUC, UCC, ACC, GCC, CGC, CUG, AUC, GUC, CUC, and 

GGC are more often overrepresented among filamentous fungi in comparison to budding yeasts; in 

contrast, UUG, GUU, CCA, and GGU are more often overrepresented among budding yeasts in 

comparison to filamentous fungi. Variation within each lineage was also observed; for example, UUA 

was underrepresented in most, but not all, budding yeasts. 
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Patterns of gene-wise codon usage bias can be used to assess codon optimization and predict steady-

state gene expression levels 

To evaluate the utility of BioKIT in examining gene-wise codon usage biases, we calculated the mean and 

median gw-RSCU value, a novel metric introduced in the present manuscript, for individual protein 

coding genes in the genome of S. cerevisiae (Figure 4A). Mean and median gw-RSCU values were often, 

but not always, similar—the average absolute difference between mean and median gw-RSCU is 0.05 ± 

0.04. In S. cerevisiae, as well as other organisms, genes encoding ribosomal components and histones are 

known to be codon optimized and highly expressed (Hershberg and Petrov, 2009; LaBella et al., 2021; 

Sharp et al., 1986). Therefore, we hypothesized that genes with high gw-RSCU values will have functions 

related to ribosomes or histones because patterns of gene-wise codon usage bias may be indicative of 

codon optimization. Supporting this hypothesis, examination of the 10 genes with the highest mean gw-

RSCU revealed five genes with ribosome-related functions [RPL41B (YDL133C-A), mean gw-RSCU: 

1.60; RPL41A (YDL184C), mean gw-RSCU: 1.58; RPS14A (YCR031C), mean gw-RSCU: 1.44; RPS9B 

(YBR189W), mean gw-RSCU: 1.43; and RPL18A (YOL120C), mean gw-RSCU: 1.43] and four genes 

with histone-related functions [HHF1 (YBR009C), mean gw-RSCU: 1.45; HTA2 (YBL003C), mean gw-

RSCU: 1.44; HHF2 (YNL030W), mean gw-RSCU: 1.43; and HTA1 (YDR225W), mean gw-RSCU: 

1.43]. Examination of the 10 most optimized genes according to median gw-RSCU revealed similar 

observations wherein nine genes had ribosome-related functions [RPS14A (YCR031C), median gw-

RSCU: 1.48; RPS12 (YOR369C), median gw-RSCU: 1.40; RPS30B (YOR182C), median gw-RSCU: 

1.40; RPP2A (YOL039W), median gw-RSCU: 1.40; RPL18A (YOL120C), median gw-RSCU; RPS3 

(YNL178W), median gw-RSCU: 1.40; RPL13B (YMR142C), median gw-RSCU: 1.40; RPP0 

(YLR340W), median gw-RSCU: 1.40; and RPS0B (YLR048W), median gw-RSCU: 1.40]. More broadly, 

genes associated with the 60S and 40S ribosomal units (gold color in Figure 4A) tended to have high gw-

RSCU values. These results suggest gw-RSCU values may be useful for estimating codon optimization. 
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To further explore the relationship between gw-RSCU and codon optimization, we compared gw-RSCU 

values to the values of the tRNA adaptation index, a measure of codon optimization (Sabi and Tuller, 

2014), in S. cerevisiae as well as in steady state gene expression data from Saccharomyces mikatae 

(LaBella et al., 2019). In S. cerevisiae, strong correlation was observed between mean gw-RSCU and 

tRNA adaptation index values (Figure 4B) and a less robust, but still significant, correlation was observed 

between median gw-RSCU and tRNA adaptation index values (Figure 4C). Examination of gw-RSCU 

and gene expression data from S. mikatae revealed a robust correlation (Figure 4E and 4F) suggesting gw-

RSCU, and in particular the mean gw-RSCU, can serve as a measure of gene-wise codon optimization.  

 

Conclusion 

BioKIT is a multi-purpose toolkit that has diverse applications for bioinformatics research. The utilities 

implemented in BioKIT aim to facilitate the execution of seamless bioinformatic workflows that handle 

diverse sequence file types. Implementation of state-of-the-art software development and design 

principles in BioKIT help ensure faithful function and archival stability. BioKIT will be helpful for 

bioinformaticians with varying levels of expertise and biologists from diverse disciplines including 

molecular biology. 

 

Data Availability 

BioKIT is freely available under the MIT license from GitHub (https://github.com/JLSteenwyk/BioKIT), 

PyPi (https://pypi.org/project/jlsteenwyk-biokit/), and the Anaconda Cloud 

(https://anaconda.org/jlsteenwyk/jlsteenwyk-biokit). Documentation, user tutorials, and instructions for 

requesting new features are available online (https://jlsteenwyk.com/BioKIT).  
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Figure 1. Summary of genome assembly metrics across 901 genomes from three eukaryotic classes. 

Nine hundred and one scaffold-level genome assemblies from three major eukaryotic classes (215 

Eurotiomycetes (kingdom: Fungi), 336 Magnoliopsida (kingdom: Plantae), 350 Mammalia (kingdom: 

Animalia)) were obtained from NCBI and examined for diverse metrics including assembly size, GC 

content, frequency of A, T, C, and G, N50, N90, L50, L90, number of scaffolds, number of large 

scaffolds (defined as being greater than 500 nucleotides, which can be modified by the user), sum length 

of large scaffolds, and longest scaffold in the assembly. Bar plots represent the mean for each taxonomic 
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class. Error bars represent the standard deviation of values. This figure was made using ggplot2 

(Wickham, 2009) and ggpubfigs (https://github.com/JLSteenwyk/ggpubfigs). 
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Figure 2. Summary metrics among multiple sequence alignments from phylogenomic studies. 

Multiple sequence alignments of amino acid sequences from ten phylogenomic data matrices (Borowiec 

et al., 2015; Chen et al., 2015; Misof et al., 2014; Nagy et al., 2014; Shen et al., 2018; X.-X. Shen, Zhou, 

et al., 2016; Steenwyk et al., 2019; Struck et al., 2015; Whelan et al., 2015; Yang et al., 2015) were 

examined for five metrics: number of taxa, alignment length, number of constant sites, number of 

parsimony-informative sites, and number of variable sites. The x-axis depicts the last name of the first 

author of the phylogenomic study followed by a description of the organisms that were under study. The 

abbreviation PI represents parsimony-informative sites. Although excluded here for simplicity and clarity, 

BioKIT also determines character state frequency (nucleotide or amino acid) when summarizing 

alignment metrics. This figure was made using ggplot2 (Wickham, 2009) and ggpubfigs 

(https://github.com/JLSteenwyk/ggpubfigs). 
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Figure 3. Relative synonymous codon usage across 171 fungal genomes. Relative synonymous codon 

usage (RSCU) was calculated from the coding sequences of 103 Eurotiomycetes (filamentous fungi) and 

68 Saccharomycetes (budding yeasts) genomes obtained from NCBI. Hierarchical clustering was 

conducted across the fungal species (rows) and codons (columns). Eight groups of clustered rows were 

identified; seven groups of clustered columns were identified. Broad differences were observed in the 

RSCU values of Eurotiomycetes and Saccharomycetes genomes. For example, Saccharomycetes tended 

to have higher RSCU values for the AGA codon, whereas Eurotiomycetes tended to have higher RSCU 

values for the CUG codon. To account for the use of an alternative genetic code in budding yeast 

genomes from the CUG-Ser1 and CUG-Ser2 lineages (Krassowski et al., 2018), the alternative yeast 

nuclear code—which is one of 26 alternative genetic codes incorporated into BioKIT—was used during 

RSCU determination. User’s may also provide their own genetic code if it is unavailable in BioKIT. 

Overrepresented codons (RSCU>1) are depicted in a gold gradient; underrepresented codons (RSCU<1) 

are depicted in a blue gradient. RSCU values greater than 2 are depicted with the maximum gold color. 

Eurotiomycetes are depicted in grey; Saccharomycetes are depicted in green. This figure was made using 

pheatmap (Kolde, 2012). 
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Figure 4. Mean gene-wise relative synonymous codon usage accurately estimates codon 

optimization. (A) Gene-wise relative synonymous codon usage (gw-RSCU), the mean (x-axis) or median 

(y-axis) relative synonymous codon usage value per gene (based on RSCU values calculated from the 

entire set of protein coding genes), was calculated from the coding sequences of the model budding yeast 

Saccharomyces cerevisiae. (B, C) In S. cerevisiae, a significant correlation was observed between tRNA 

adaptation index (tAI), a well-known measure of codon optimization (Sabi and Tuller, 2014), and mean as 

well as median gw-RSCU (r2 = 0.52, p < 0.001 and r2 = 0.25, p < 0.001, respectively; Pearson's 

Correlation Coefficient). (D) Using previously published data, a correlation is observed between median 

log2 gene expression and tAI in Saccharomyces mikatae (LaBella et al., 2019), which is evidence of tAI 

values being indicative of codon optimization. Comparison of mean and median gw-RSCU (E and F, 

respectively) and median log2 gene expression revealed similarly strong correlations (r2 = 0.57, p < 0.001 

and r2 = 0.41, p < 0.001, respectively; Pearson's Correlation Coefficient). Of note, mean gw-RSCU had a 

strong correlation to gene expression than median gw-RSCU. Each gene is represented by a dot. In panel 
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A, the size of each dot represents the standard deviation of RSCU values observed in the gene and the 

color of each dot represents if the protein encoded by the gene has functions related to the 60S and 40S 

ribosomal subunits (gold) or a different function (blue). 
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Table 1. Summary of 40 functions in BioKIT 

Function name Description Type of 
function Input data  Citation Example software that performs this 

function 

alignment_length Calculate alignment length Analysis 
Multiple-

sequence file in 
FASTA format 

NA AMAS (Borowiec, 2016) 

alignment_recoding 
Recode alignments using 
reduced character states 

Processing 
Multiple-

sequence file in 
FASTA format 

(Woese et al., 1991; 
Hrdy et al., 2004; 

Embley et al., 2003; 
Susko and Roger, 

2007; Kosiol et al., 
2004) 

Custom scripts (Hernandez and Ryan, 
2021) 

alignment_summary 
Summarize diverse properties of 
a multiple sequence alignment 

Analysis 
Multiple-

sequence file in 
FASTA format 

NA 
AMAS (Borowiec, 2016); custom scripts 

(X.-X. Shen, Salichos, et al., 2016); 
PhyKIT (Steenwyk et al., 2021) 

consensus_sequence Generates a consensus sequence Analysis 
Multiple-

sequence file in 
FASTA format 

(Sternke et al., 2019) Geneious (https://www.geneious.com) 

constant_sites 
Determine the number of 

constant sites in an alignment 
Analysis 

Multiple-
sequence file in 
FASTA format 

(Kumar et al., 2016) IQ-TREE (Minh et al., 2020) 

parsimony_informative_sites 
Determine the number of 

parsimony-informative sites in 
an alignment 

Analysis 
Multiple-

sequence file in 
FASTA format 

(Kumar et al., 2016) 
AMAS (Borowiec, 2016); custom scripts 

(X.-X. Shen, Salichos, et al., 2016) 

position_specific_score_matrix 
Generates a position specific 
score matrix for an alignment 

Analysis 
Multiple-

sequence file in 
FASTA format 

(Gribskov et al., 1987) BLAST+ (Camacho et al., 2009) 

variable_sites 
Determine the number of 

variable sites in an alignment 
Analysis 

Multiple-
sequence file in 
FASTA format 

(X.-X. Shen, Salichos, 
et al., 2016) 

AMAS (Borowiec, 2016); custom scripts 
(X.-X. Shen, Salichos, et al., 2016); 

PhyKIT (Steenwyk et al., 2021) 

gc_content_first_position 
Determine the GC content of the 

first codon position among 
protein coding sequences 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Bentele et al., 2013) Custom scripts (Bentele et al., 2013) 

gc_content_second_position 
Determine the GC content of the 

second codon position among 
protein coding sequences 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Bentele et al., 2013) Custom scripts (Bentele et al., 2013) 
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gc_content_third_position 
Determine the GC content of the 

third codon position among 
protein coding sequences 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Bentele et al., 2013) Custom scripts (Bentele et al., 2013) 

gene_wise_relative_synonymous_
codon_usage 

Calculate gene-wise relative 
synonymous codon usage 

Analysis 
Protein coding 
sequences in 

FASTA format 
This study This study 

relative_synonymous_codon_usag
e 

Calculate relative synonymous 
codon usage 

Analysis 
Protein coding 
sequences in 

FASTA format 
(Xu et al., 2008) MEGA (Kumar et al., 2016) 

translate_sequence 
Translate protein coding 
sequences to amino acid 

sequences 
Processing 

Protein coding 
sequences in 

FASTA format 
NA EMBOSS (Rice et al., 2000) 

fastq_read_lengths 
Examine the distribution of read 

lengths 
Analysis 

Sequence reads 
in FASTQ 

format 
NA FQStat (Chanumolu et al., 2019) 

subset_pe_fastq_reads Down sample paired-end reads Processing 
Sequence reads 

in FASTQ 
format 

NA SeqKit (W. Shen et al., 2016) 

subset_se_fastq_reads Down sample single-end reads Processing 
Sequence reads 

in FASTQ 
format 

NA SeqKit (W. Shen et al., 2016) 

trim_pe_fastq_reads 
Trim paired-end reads based on 

quality and length thresholds 
Analysis 

Sequence reads 
in FASTQ 

format 
NA Trimmomatic (Bolger et al., 2014) 

trim_se_fastq_reads 
Trim single-end reads based on 
quality and length thresholds 

Analysis 
Sequence reads 

in FASTQ 
format 

NA Trimmomatic (Bolger et al., 2014) 

gc_content Determine GC content Analysis 
FASTA file of 

nucleotide 
sequences 

(Romiguier et al., 
2010) 

custom scripts (X.-X. Shen, Salichos, et 
al., 2016); GC-Profile (Gao and Zhang, 

2006) 

genome_assembly_metrics 
Determine diverse properties of 
a genome assembly for quality 

assessment and characterization 
Analysis 

FASTA file of 
a genome 
assembly 

(Gurevich et al., 2013) 
QUAST (Gurevich et al., 2013); REAPR 

(Hunt et al., 2013) 

l50 L50 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al., 2013) QUAST (Gurevich et al., 2013) 
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l90 L90 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al., 2013) QUAST (Gurevich et al., 2013) 

longest_scaffold 
Determine the length of the 

longest entry in a FASTA file 
Analysis FASTA file (Gurevich et al., 2013) Custom scripts (Ou et al., 2020) 

n50 N50 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al., 2013) QUAST (Gurevich et al., 2013) 

n90 N90 Analysis 
FASTA file of 

a genome 
assembly 

(Gurevich et al., 2013) QUAST (Gurevich et al., 2013) 

number_of_large_scaffolds 

Determine the number and 
length of scaffolds longer than 

500 nucleotides. Length 
threshold of 500 nucleotides can 

be modified by the user 

Analysis FASTA file NA QUAST (Gurevich et al., 2013) 

number_of_scaffolds 
Determine the number of 

FASTA entries 
Analysis FASTA file NA QUAST (Gurevich et al., 2013) 

sum_of_scaffold_lengths 
Determine the total length of all 

FASTA entries 
Analysis FASTA file NA QUAST (Gurevich et al., 2013) 

character_frequency 

Determine the frequency of each 
character. Gaps are assumed to 

be represented as ‘?’ and ‘-’ 
characters 

Analysis FASTA file NA 
Biostrings 

(https://rdrr.io/bioc/Biostrings/) 

faidx 
Get sequence entry from FASTA 

file 
Processing FASTA file NA SAMtools (Li et al., 2009) 

file_format_converter 
Converts multiple sequence 

alignments from one format to 
another 

Processing 

FASTA, 
Clustal, MAF, 
Mauve, Phylip, 

Phylip-
sequential, 

Phylip-relaxed, 
and Stockholm 

NA ALTER (Glez-Pena et al., 2010) 

multiple_line_to_single_line_fast
a 

Reformat sequences to be 
represented on one line 

Processing FASTA file NA 
FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) 
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remove_fasta_entry 
Remove sequence based on entry 

identifier  
Processing FASTA file NA NA 

remove_short_sequences Remove short sequences Processing FASTA file NA NA 

rename_fasta_entries Rename FASTA entries Processing FASTA file NA 
FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) 

reorder_by_sequence_length 
Reorder FASTA entries by 

length 
Processing FASTA file NA SeqKit (W. Shen et al., 2016) 

sequence_complement 
Generate sequence complements 

in the forward or reverse 
direction 

Processing FASTA file (Britten, 1998) EMBOSS (Rice et al., 2000) 

sequence_length 
Calculate the length of each 

FASTA file 
Analysis FASTA file NA  bioawk (https://github.com/lh3/bioawk) 

single_line_to_multiple_line_fast
a 

Reformat sequences to be 
represented on multiple lines 

Processing FASTA file NA 
FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/) 
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