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Abstract

The fungal genus Aspergillus contains a diversity of species divided into taxonomic sections of
closely related species. Section Flavi contains 33 species, many of industrial, agricultural, or
medical relevance. Here, we analyze the mitochondrial genomes (mitogenomes) of 20 Flavi
species—including 18 newly assembled mitogenomes—and compare their evolutionary history
and codon usage bias (CUB) patterns to their nuclear counterparts. CUB refers to variable
frequencies of synonymous codons in coding DNA and is shaped by a balance of neutral
processes and natural selection. All mitogenomes were circular DNA molecules with highly
conserved gene content and order. As expected, genomic content, including GC content, and
genome size differed greatly between mitochondrial and nuclear genomes. Phylogenetic analysis
based on 14 concatenated mitochondrial genes predicted evolutionary relationships largely
consistent with those predicted by a phylogeny constructed from 2,422 nuclear genes.
Comparing similarities in interspecies patterns of CUB between mitochondrial and nuclear
genomes showed that species grouped differently by patterns of CUB depending on whether
analyses were performed using mitochondrial or nuclear relative synonymous usage values. We
found that patterns of CUB at gene-level are more similar between mitogenomes of different
species than the mitogenome and nuclear genome of the same species. Finally, we inferred that,
although most genes—both nuclear and mitochondrial—deviated from the neutral expectation
for codon usage, mitogenomes were not under translational selection while nuclear genomes
were under moderate translational selection. These results contribute to the study of

mitochondrial genome evolution in filamentous fungi.
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Introduction

The fungal genus Aspergillus is an important genus of filamentous fungi. The genus houses
species with industrial applications, important pathogens of humans, animals and crops,
producers of potent carcinogenic mycotoxins, and the genetic model organism Aspergillus
nidulans (de Vries et al. 2017). Aspergillus is divided into taxonomic sections of closely related
species. Section Flavi consists of 33 species, many of which have industrial, agricultural, or
medical relevance (Gourama and Bullerman 1995; Hedayati et al. 2007; de Vries et al. 2017;
Frisvad et al. 2018; Homa et al. 2019). For example, A. oryzae constitutes an important cell
factory for enzyme production and, along with 4. sojae, is vital to the production of a range of
fermented foods (Machida et al. 2008; Sato et al. 2011). Conversely, 4. flavus is an effective
producer of aflatoxin B, a potent carcinogenic mycotoxin, and has been found to be both a plant
contaminant and occasional pathogen, as well as an opportunistic human pathogen (Hedayati et
al. 2007; Hoffmeister and Keller 2007; Dolezal et al. 2014). To better understand the diversity of
these fungi, a recent study sequenced the genomes for 23 of the 33 known Flavi species to gain

insights into their biology and evolution (Kj&rbelling et al. 2020).

Previous genomic analyses of section Flavi focus almost exclusively on the nuclear genomes of
the sequenced species (de Vries et al. 2017; Kjarbelling et al. 2020); the sole exception was a
2012 study that described the genomes of six diverse Aspergillus species, including two from
section Flavi (Joardar et al. 2012). However, whole genome sequencing captures nucleotide
sequences from both nuclear and organellar genomes. Fungal mitochondria have been linked to
diverse processes including energy metabolism, cell differentiation, drug resistance, biofilm and

hyphal growth regulation, and virulence, amongst others (Sanglard et al. 2001; Burger et al.
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2003; Martins et al. 2011; Chatre and Ricchetti 2014; Calderone et al. 2015). Using appropriate
software, mitochondrial reads can be effectively filtered and separated from nuclear reads within
existing whole-genome sequencing datasets to be used for mitochondrial genome (mitogenome)
assembly and annotation (Hugaboom et al. 2021). Fungal mitogenomes, including those of
Aspergillus species, are typically circular and composed of a single chromosome (Brown et al.
1985; Joardar et al. 2012). Mitogenomes replicate independently from the nuclear genome and
cell cycle and tend to have high copy number. Fourteen protein-coding genes involved in the
electron transport chain are highly conserved within fungal mitogenomes (Gray et al. 1999;
Lavin et al. 2008; Joardar et al. 2012). Genes for two ribosomal rRNAs subunits, one large and
one small, and a variable number of tRNAs also tend to be housed in the mitogenome (Gray et
al. 1999; Lavin et al. 2008; Joardar et al. 2012). Variation in fungal mitogenomes is largely due
to differences in intron distribution and the variable presence of accessory mitochondrial genes,
even between closely related species (Joardar et al. 2012; Li, Xiang, et al. 2019; Li, Wang, et al.
2019; Wang et al. 2020; Zhang et al. 2020; Chen et al. 2021). Importantly, mitogenomes also
differ from nuclear genomes in their inheritance pattern. Although fungal mitogenomes are not
always uniparentally inherited and can exhibit recombination (Basse 2010; Stein and Sia 2017;
Zardoya 2020; Mukhopadhyay and Hausner 2021), Aspergillus mitogenomes are uniparentally
inherited and rarely display recombination, offering a unique phylogenetic perspective (Coenen
et al. 1996; Santamaria et al. 2009; Kjerbelling et al. 2020). Mitochondrial genomes may

therefore hold clues to both the biology and evolution of these fungal species.

Another key difference between mitogenomes and nuclear genomes is codon usage bias (CUB).

CUB refers to the different frequency of synonymous codons—those that code for the same
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amino acid—in coding DNA. Changes in synonymous codons do not alter primary protein
sequence and were thus once assumed to be selectively neutral (Jia and Higgs 2008; Wei et al.
2014; LaBella et al. 2019). However, CUB has been found to influence numerous cellular
processes, particularly those associated with translation (Stoletzki and Eyre-Walker 2007; Zhou
et al. 2009). This is hypothesized to be due to codon optimization: the tendency for codon usage
to be correlated to the abundance of tRNA molecules in the genome (Post et al. 1979; Nakamura
et al. 1980; Ikemura 1981; Gouy and Gautier 1982; P M Sharp and Li 1986; Thomas et al. 1988).
During translation, mRNAs containing optimized codons—codons corresponding to the tRNA
pool of the cell—are translated more efficiently than those with non-optimal codon usage
(Bulmer 1991; Xia 1998; Chevance et al. 2014; Presnyak et al. 2015; Hanson and Coller 2018).
In many organisms, this leads to a correlation between codon usage and protein production
(Ikemura 1981; Bulmer 1991; Gustafsson et al. 2004; Hiraoka et al. 2009; Roymondal et al.
2009; Zhipeng et al. 2016; Payne and Alvarez-Ponce 2019; Sahoo et al. 2019). Importantly,
mitogenomes house their own set of tRNAs that is distinct from that of the nuclear genome and
thus may exhibit patterns of CUB shaped by optimization to a greater extent by the
mitochondrial set of tRNAs (tRNAome) than the nuclear tRNAome. Variation in synonymous
codon usage is a widespread phenomenon at codon, gene, and whole genome levels in nuclear
and mitochondrial genomes (LaBella et al. 2019; LaBella et al. 2021; Wint et al. 2022). This
variation in codon usage likely reflects a balance of mutational bias (e.g., GC content), natural
selection (e.g., translational selection), and genetic drift (Ikemura 1985; Shields and Sharp 1987;
Sharp et al. 1993; Wei et al. 2014). The balance of these forces varies between organisms. In
many microbes, for example, translational selection plays a large role, whereas mutational bias

plays the primary role in humans (Sharp et al. 1993). However, analysis of mitochondrial CUB
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in fungi is limited (Kamatani and Yamamoto 2007; Carullo and Xia 2008). Understanding
patterns of CUB can provide insight into the evolutionary history of individual genes and entire

genomes.

To gain insights into the evolution of mitogenomes from the section Flavi, we analyzed
mitochondrial genomes of 20 section Flavi species—including 18 newly assembled ones—and
compared their phylogeny and CUB to the nuclear genomes of the same species. All
mitogenomes were confirmed to be circular DNA molecules of low GC content with highly
conserved gene content and gene order. Genomic content and size differed greatly between
mitochondrial and nuclear genomes. We then inferred and compared phylogenies constructed
from mitochondrial versus nuclear genes. The presence and high copy number of mitogenomes
within the cell as well as the lack of recombination relative to nuclear genomes (for a discussion
of fungal mitochondrial genome recombination, see Zardoya 2020, Mukhopadhyay and Hausner
2021, and Stein and Sia 2017) make mitochondrial genes and genomes useful markers for
phylogenetic analyses. Currently, phylogenies constructed for Aspergillus section Flavi are based
solely on nuclear genome markers (Kjarbelling et al. 2020; Shen et al. 2020). Phylogenetic
analysis based on 14 concatenated mitochondrial genes (mitogenes) predicted evolutionary
relationships largely consistent with those inferred by a phylogeny based on nuclear data. We
then investigated CUB in mitochondrial and nuclear genomes. At the gene-level, we found that
patterns of CUB reflect whether the gene is mitochondrial or nuclear in origin as well as
mitogene identity rather than species of origin; these patterns were influenced largely by GC
content of the third codon position. Finally, we determined that although most genes—both

nuclear and mitochondrial—deviated from the neutral expectation, mitogenomes were not under
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translational selection while nuclear genomes were under moderate translational selection. By
providing mitogenome assemblies for 20 section Flavi species and comparing the evolution of
mitochondrial and nuclear genes in section Flavi, our study advances our understanding of

genome evolution in the genus Aspergillus.

Methods

Genomic Data

We used strains from 21 species within section Flavi and Aspergillus niger (section Nigri) as an
outgroup for phylogenetic analyses. For the mitochondrial dataset, we used a combination of
available mitochondrial reference genomes and newly assembled whole-genome sequencing
reads. Three previously assembled mitochondrial reference genomes (Aspergillus sojae,
Aspergillus oryzae, and Aspergillus niger) were downloaded from NCBI’s Nucleotide Database
(Juhasz et al. 2008; Machida et al. 2008; Sato et al. 2011). For new assemblies, previously
sequenced paired-end Illumina whole genome sequence reads were downloaded from NCBI’s

Sequence Read Archive (Kjarbelling et al. 2020; Hatmaker et al. 2022).

Annotated protein-coding nucleotide sequences (CDS) for each nuclear genome were
downloaded from JGI MycoCosm (Grigoriev et al. 2014; Kjaerbelling et al. 2020) except for A.
sojae, A. flavus, and A. nomiae. For A. sojae, strain-matched nuclear annotations were not
available and thus this species was not included in phylogenetic inferences or any analyses based
on nuclear genomic data. For A. flavus and A. nomiae, we used annotations from recently
assembled genomes (Hatmaker et al., 2022), extracting the CDS regions. Strains and data

sources are summarized in Table 1.
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Mitochondrial Genome Assembly

Data from the whole genome sequence read files were extracted into usable format (FASTQ
files) using SRA Toolkit v2.9.6-1 (Leinonen et al. 2011). Mitochondrial genomes were
assembled from the raw reads of each species using the organelle genome assembler
GetOrganelle v1.7.4.1 (Jin et al. 2020). Following the method of Hugaboom et al. (2021), we
used the internal GetOrganelle fungal database (-F fungus mt) and default parameter values for
number of threads, extension, and k-mers to assemble the mitogenomes (Hugaboom et al. 2021).
The complete mitochondrial genome for Aspergillus fumigatus SGAir0713 (GenBank accession:
CM16889.1) was used as a reference for the seed database (parameter -s) for mitogenome
assembly. Contigs generated for each Aspergillus species were circularized such that there was

no overlap in the beginning and end of the mitochondrial genome sequence.

Read Mapping

Read mapping to correct errors was carried out using Bowtie2 v2.3.4.1 (Langmead and Salzberg
2012) and SAMtools v1.6 (Li et al. 2009). Bowtie2 aligned the raw paired-end reads from each
Aspergillus species against the corresponding circularized mitochondrial genome. Variants were
identified using SAMtools. Read mapping was also visualized and variants identified using the

Integrative Genomics Viewer (IGV) v2.9.4 (Robinson et al. 2017).

Mitogenome Annotation
The rapid organellar genome annotation software GeSeq v2.03 (Tillich et al. 2017) was used to

annotate the circularized mitochondrial genomes. In addition to the newly assembled
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mitogenomes, mitochondrial reference genomes for A. oryzae and A. sojae were also annotated
using GeSeq. Gene names were adjusted, and translations were checked in accordance with the
reference mitochondrial genomes of A. flavus TCM2014 (NC 026920.1), A. oryzae 3.042
(NC 018100.1), 4. parasiticus (NC_041445.1), and A. fumigatus A1163 (NC 017016.1). For
rnl genes, GeSeq output was adjusted in accordance with both manual inspection in comparison
to the above reference mitogenomes and NCBI Blast for similar sequences. Annotations were
finalized following inspection of automated gene sequences using Geneious Prime v2021.1

(Kearse et al. 2012). OGDraw v1.1.1 (Greiner et al. 2019) was used for genome visualization.

Multiple Sequence Alignment

Using MAFFT v7 (Katoh et al. 2019), single-gene multiple sequence alignment (MSA) files
based on DNA nucleotide sequences were created for each of the 14 core mitogenes. cytochrome
oxidase subunits 1, 2, and 3, NADH dehydrogenase subunits 1, 2, 3, 4, 4L, 5, and 6, ATP
synthase subunits 6, 8, and 9, and cytochrome b. Gene nucleotide sequences corresponding to
translated amino acid sequences for each gene were extracted from Geneious Prime v2021.1
(Kearse et al. 2012) sequence view and reverse complemented as necessary. The 14 individual

MSA files were concatenated using SequenceMatrix v1.9 (Vaidya et al. 2011).

Phylogenetic inference

To infer the evolutionary relationships within section F/avi, maximum likelihood phylogenies
were constructed from both mitochondrial and nuclear data. The mitochondrial phylogeny was
constructed from the MSA of 14 core concatenated mitogene nucleotide sequences files using

RAXML v8.2.11 (Stamatakis 2014). The MSA was trimmed with ClipKIT v1.3.0 (Steenwyk et
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al. 2020) to retain parsimony-informative sites prior to construction of the phylogeny. 4. niger
(NC _007445.1) was used as the outgroup. We used 1,000 bootstrap replicates to evaluate
robustness of inference. For the nuclear phylogeny, orthologous proteins in all species were
identified using OrthoFinder v2.5.4 (Emms and Kelly 2019). MSAs for each of 2,422 orthologs
were concatenated using the script catfasta2phyml.pl

(https://github.com/nylander/catfasta2phyml). The maximum likelihood nuclear phylogeny was

constructed with 1,000 replicates for bootstrapping using RAXML v8.2.11 (Stamatakis 2014)
from the aligned orthologs shared among all the Aspergillus species in the study (including 4.
niger) except A. sojae, which did not have available sequencing data for nuclear genome
assembly and annotation. For both nuclear and mitochondrial phylogenies, GTR + I" substitution
models were used in accordance with model testing performed within the raxmlGUI 2.0 platform
(Kozlov et al. 2019; Edler et al. 2021). The resulting consensus trees for both the mitochondrial

and nuclear phylogenies were visualized using Geneious Prime v2020.1.2 (Kearse et al. 2012).

Cluster Analysis

To compare patterns of synonymous codon usage bias between mitochondrial and nuclear
genomes, hierarchical clustering of genome-level relative synonymous codon usage (RSCU)
values was calculated and visualized using RStudio v. 2021.09.1. RSCU is a commonly used
metric for codon usage bias that reflects the observed frequency of a particular codon divided by
its expected frequency if all synonymous codons were used equally (Paul M Sharp and Li 1986).
Genome-level RSCU values as well as RSCU values for each mitochondrial and nuclear gene

were computed using DAMBE v7.3.5 (Xia 2017).
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Correspondence Analysis

To determine which codons drive differences in signatures of codon usage between nuclear and
mitochondrial genes and between the mitogenomes of the 20 Flavi species, correspondence
analyses were performed using gene-level RSCU values. Correspondence analysis was used for
multivariate analysis because the RSCU values are interdependent—the RSCU values for one
codon are inherently linked to the RSCU values of other synonymous codons—and thus not
suited for principal component analysis. The correspondence analyses were carried out in

RStudio v. 2021.09.1. wusing the packages ade4  v.1.7-19( https://CRAN.R-

project.org/package=ade4) and factoextra v.1.0.7 ( https://CRAN.R-

project.org/package=factoextra).

Evaluation of mutational bias and codon usage

To evaluate the role of mutational bias in determining the observed patterns of codon usage bias
in section Flavi, we plotted the effective number of codons (ENc) for each gene against their
respective GC3 values, where GC3 is the GC content of the third codon position. ENc is often
used to assess the non-uniformity of synonymous codon usage within individual genes (Wright
1990). Values range from 20 (extreme bias where only one codon is used per amino acid) to 61
(no bias). The ENc values for each gene were computed in DAMBE v.7.3.5 (Xia 2017). The
resulting distribution was compared to the predicted neutral distribution proposed by dos Reis et
al. (dos Reis et al. 2004) using the suggested parameters by computing the R values between the

observed and expected ENc values.

Evaluation of selection on codon usage
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To compare the influence of translational selection on the codon usage bias of mitogenomes
as compared to nuclear genomes, we calculated the S-value proposed by dos Reis et al. (2004)
for each species. The S-value is the correlation between the tRNA adaptation index (stAl) and
the confounded effects of selection on the codon usage of a gene as well as of other factors (e.g.,
mutation bias, genetic drift). Therefore, the S-value measures the proportion of the variance in
codon bias that cannot be accounted for without invoking translational selection. Thus, the

higher the S-value, the stronger the action of translational selection on the given set of genes.

To calculate the S-value, we first measured tRNA counts for each nuclear and mitochondrial
genome using tRNAscan-SE 2.0 (Chan et al. 2021). These counts were used to calculate the
species-specific value for each codon’s relative adaptiveness (wi) in stAlcalc, version 1.0 (Sabi
et al. 2017). Exclusively mitochondrial tRNA counts were used to obtain wi values for
mitogenomes, whereas exclusively nuclear genome tRNA counts were used for nuclear
genomes. Taking the geometric mean of all wi values for the codons yielded the stAl of each
gene. These stAl values were then used to calculate S-values for each mitochondrial and nuclear

genome with the R package tAILLR, version 0.2 (https://github.com/mariodosreis/tai).

The statistical significance of each S-value was tested via a permutation test. 100 permutations
were run such that each genome’s wi values were randomly assigned to codons, the tAl values
recalculated for each gene, and the S-test run on that permutation. A genome’s observed S-value
was considered statistically significant if it fell in the top 5% of the distribution formed by the

100 values obtained by the permutation analysis.
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Results

Genomic content varies greatly between nuclear and mitochondrial genomes

All mitogenomes were found to be small, circular DNA molecules with low GC content of 24.9-
26.9% (Table 2, Figure 1). Each mitogenome contained fourteen core genes (cytochrome oxidase
subunits 1, 2, and 3, NADH dehydrogenase subunits 1, 2, 3, 4, 4L, 5, and 6, ATP synthase
subunits 6, 8, and 9, and cytochrome b) with conserved order and shared synteny (Figure 2).
Additionally, a ribosomal protein S3 was found in all newly annotated Flavi genomes, and an
intron encoded LAGLIDADG endonuclease was found in all mitogenomes except for A.
avenaceus and A. leporis. Variations in mitogenome length are due to variations in intron
number and length, primarily in the cox/ gene. Introns were universally present in the cox/ gene,
with most mitogenomes housing a single intron ranging from 1,393-1,780 bp. Two exceptions—
A. avenaceus and A. coremiiformis—housed 3 and 4 introns of total length 4,344 and 3,504 bp,
respectively, in their cox/ genes. All mitogenomes also housed a single intron in their 71/ gene
ranging from 1,682-1,709 bp. Finally, 4. avenaceus and A. coremiiformis were found to have
additional introns. 4. avenaceus has a 1,227 bp intron in its atp9 gene and a 1,200 bp intron in its
cob gene, while A. coremiiformis has a 1,104 bp intron in its nad5 gene and a 1,379 bp intron in

its cob gene.

Conversely, corresponding nuclear genomes are linear and have less extreme GC content biases
ranging from 43.0-48.8% (Table 2). Nuclear genomes are roughly 1,000 times larger than their
mitochondrial counterparts; while mitogenomes ranged from 29.100-39.269 Kbp, nuclear
genomes ranged from 30,1001-40,900 Kbp. Of note, both nuclear and mitochondrial genomes
house their own set of tRNAs (i.e., have their own tRNAome), although the tRNAome of nuclear

genomes is roughly ten times larger than that of mitochondrial genomes. While nuclear genomes
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house 228-272 tRNAs, the mitogenomes encode a conserved set of 26 tRNAs. Importantly, each
amino acid is represented by at least one tRNA in the conserved mitochondrial tRNAome.
However, the codons GCC, GCU, CGG, CUC, CUU, CCC, CCU, UCC, UCG, UCU, ACC,
ACU, GUC, GUU, and UGG could not be decoded without invoking additional wobble

hypotheses, modification of mitochondrial tRNAs or importation of nuclear tRNAs.

Mitochondrial and nuclear phylogenies are very similar

To understand how the evolutionary history of section Flavi informed by mitogenomes compares
to that of nuclear genomes, a mitochondrial phylogeny was constructed using a concatenation of
14 core mitogene nucleotide sequences (Figure 3B). The resulting phylogeny displayed high
bootstrap support. Despite minor topological differences from a well-supported nuclear
phylogeny (Figure 3A) amongst more closely related species, the evolutionary relationships
predicted by the mitochondrial phylogeny largely align with those predicted by the nuclear
phylogeny. For instance, although A. minisclerotigenes, A. sergii, A. flavus, A. arachidicola, A.
parasiticus, and A. novoparasiticus fall within the same clade in both nuclear and mitochondrial
phylogenies, the predicted evolutionary relationships within this clade vary slightly.
Evolutionary rate was found to be more rapid in mitochondrial genomes relative to nuclear
genomes. For example, the evolutionary distance between A. flavus and A. nomiae was 0.086
substitutions per site in the nuclear phylogeny, but 0.244 substitutions per site in the
mitochondrial phylogeny. Single-gene mitochondrial phylogenies differed in their topologies but
exhibited low bootstrap support values, particularly for relationships among closely related

species (Supplementary File S1).
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Species groupings based on patterns of codon usage bias differ between mitochondrial and
nuclear genomes

To compare similarities in interspecies patterns of CUB between mitochondrial and nuclear
genomes, hierarchical clustering was performed using the net RSCU values of protein-coding
regions of both nuclear (Figure 4A) and mitochondrial (Figure 4B) genomes. The cluster
analyses predict different interspecies relationships depending on organelle of genomic origin.
For example, the cluster dendrograms show that A. coremiiformis and A. avenaceus cluster
together based on patterns of nuclear CUB, but group in completely different clusters based on
mitochondrial CUB. This suggests that different pressures may govern CUB in mitochondrial
genomes than in their

nuclear counterparts.

Patterns of codon usage bias reflect whether genes are mitochondrial or nuclear in origin

To examine signatures of codon usage between nuclear and mitochondrial genes, RSCU values
for each gene in each available genome were calculated. A correspondence analysis (CA) was
then performed to determine which codons drive observed differences in codon usage patterns
(Figure 5). The CA plot (Figure 5A) shows a distinct clustering of the majority of the mitogenes
away from nuclear genes. This demonstrates that codon usage signatures depend more on
whether genes are mitochondrial versus nuclear as opposed to whether genes belong to the same
species. The factor map of codon contributions (Figure 5B) revealed that the first dimension
explains 15.6% of observed variation between genes in the final plot. The second dimension
explains 7% of observed variance. Examining dimensional contributions by codon reveals that

the GC content of the third position drives separation along dimensions. Position along the first
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dimension (X-axis) is driven primarily by the usage of NNA versus NNC codons. The largest
contributions along the X-axis come from the usage of AUA (isoleucine) and CCC (proline).
RSCU values of greater than 1 indicate that a codon is overrepresented within a given
synonymous codon group whereas RSCU values less than 1 indicate underrepresentation. The
average RSCU of AUA and CCC are 1.6304 and 0.0449 in the mitochondria and 0.4525 and
1.0457 in the nucleus, respectively. Position along the second dimension (Y-axis) is driven
primarily by differences in the usage of NNU versus NNG codons. The largest contributions
along the Y-axis are from CCU (proline) versus GGG (glycine), ACG (threonine), and CCG
(proline) combined. The average RSCU of CCU, GGG, ACG, and CCG are 2.7140, 0.0558,
0.0204, and 0.0484 in the mitochondria and 1.072, 0.7240, 0.8274, and 0.8920 in the nucleus,

respectively.

A second CA was run using the RSCU values for each mitogene to determine which codons
drives observed interspecies differences in codon usage patterns in mitogenomes (Figure 6). The
CA plot shows distinct grouping based on gene identity as opposed to species of origin (Figure
6A). The factor map of codon contributions revealed that the first dimension explains 18.7% of
observed variation in the final CA plot, while the second-dimension accounts for 16.1% (Figure
6B). The A. avenaceus atp8 gene is a clear outlier along both axes. The codons that contribute
the most to this are ACC, UCC and CCG which are used at a frequency of 4, 4, 1.33 respectively
in this gene. RSCU values of 4 indicate that only ACC (threonine) and UCC (serine)—none of
the other synonymous codons within their respective families—are used in this gene. This degree
of bias is expected given that threonine and serine occur only once and twice, respectively, in A4.

avenaceus atp$.
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Deviation of gene-level codon usage from neutral expectation varies based on whether genes are
of nuclear or mitochondrial origin

To assess the role of mutational bias across all mitochondrial and nuclear genes, we examined
the relationship between the ENc of each gene and its GC3 content by comparing observed ENc
values to the expected relationship between ENC and GC3 content if codon usage was
influenced by neutral mutational bias alone. We tested the fit to the neutral expectation of the
complete dataset of all species’ combined nuclear and mitochondrial gene datasets as well as all
nuclear genes and all mitogenes separately by calculating the R* value. For all 20 species,
combined nuclear and mitochondrial datasets yielded R* values greater than 0.5, suggesting that
codon usage in these species can be partially explained by neutral mutational bias (Supplemental
File S2). Furthermore, patterns of deviation from the neutral expectation were highly similar
between species (Supplemental File S2). However, when nuclear and mitochondrial genes were
analyzed separately, nuclear genes had an R” value of 0.598, whereas mitochondrial genes had
an R? value of 0.211 (Figure 7). This suggests that, although codon usage in nuclear genomes
can be partially explained by neutral mutational bias, mutational bias does not fully account for

the codon bias in mitochondrial genomes.

Codon usage in nuclear genomes, but not mitogenomes, is under translational selection

To test if translational selection could account for the observed deviations of CUB from the
neutral expectation, we calculated the S-values for each mitochondrial and nuclear genome. Of
the 20 Flavi species tested, mitogenome S-values ranged from -0.103 to 0.392 with a median

value of 0.162 and mean value of 0.137 (Figure 8A). However, no species’ mitogenomes had S-
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values that were found to be significant in the permutation test. In contrast, nuclear genome S-
values ranged from 0.269 to 0.502, with a median value of 0.432 and a mean value of 0.427
(Figure 8B). The S-value of 4. novoparasiticus (S = 0.269) was calculated using the package
tALR (https://github.com/mariodosreis/tai/blob/master/R/tAI.R). This was done as the original
calculation with stAl calc created issues with file merging. All nuclear S-values were found to be
significant in the permutation test, suggesting that Flavi nuclear genomes are under moderate

levels of translational selection.

Discussion

In this study, we compared the evolution of mitochondrial and nuclear genomes within
Aspergillus section Flavi. We assembled and annotated the mitogenomes of 18 Flavi species and
reannotated two previously assembled reference mitogenomes. We then used phylogenetic
analyses to compare phylogenies derived from nuclear versus mitochondrial data. Finally, we

examined the patterns of and forces underlying CUB in nuclear and mitochondrial genomes.

The newly assembled mitogenomes are comparable in gene content and size to previously
published Aspergillus mitogenomes. At 29.10 kb to 39.27 kb, the range of Aspergillus section
Flavi mitogenome length falls within the lower range of published fungal mitogenomes, which
vary in size from 12.06 kb to 235.85 kb (Joardar et al. 2012; Zhang et al. 2020). GC content was
consistent with low percentages observed in other Aspergillus and related fungal species
(Machida et al. 2005; Sato et al. 2011; Joardar et al. 2012; Zhao et al. 2012; Yan et al. 2016; Park
et al. 2019a; Park et al. 2019b; Park et al. 2020; Hugaboom et al. 2021). The mitogenomic
content and gene order were highly conserved in the 20 Flavi species analyzed, and all

mitogenomes examined contained 14 core mitochondrial genes. As in previous studies, these
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core genes showed high levels of sequence similarity and conservation of gene order (Joardar et
al. 2012; Hugaboom et al. 2021). Fungal mitogenomes are also known to contain accessory
genes in addition to the core set of 14. The presence of the two accessory genes—an intron
encoded LAGLIDADG endonuclease and the ribosomal protein S3—in most of the species
analyzed is also consistent with existing Flavi annotations (Joardar et al. 2012; Hugaboom et al.
2021). The order of these accessory genes was also highly conserved. Of note, the mitogenomes
contained their own set of 26 tRNAs separate from the nuclear-encoded set of tRNAs. In
analyses of CUB, the mitochondrial tRNAs were used to determine if mitochondrial CUB

patterns had been optimized to the mitochondrial tRNA pool.

In comparing the topologies and evolutionary rates predicted by phylogenies derived from
nuclear and mitochondrial data, we found that their inferred evolutionary histories were similar.
The high degree of congruence in the two phylogenies suggests potential coevolution of
mitochondrial and nuclear genes. The minor disagreements between the two phylogenies may be
explained by phenomena that occur uniquely in mitochondria. For example, fungal mitochondria
are uniparentally inherited (Horn 2016 ;Santamaria et al. 2009). Additionally, fungal species can
undergo interspecific hybridization (Giordano et al. 2018). In this process, the mitochondria of
one species may be inherited by the other. Moreover, mitochondrial recombination events with
repeated backcrossing can lead to introgression (Giordano et al. 2018). Interspecific
introgression and recombination occur in fungal nuclei as well. Thus, the two phylogenies may
differ due to disparities in interspecific introgression and/or recombination occurring in the

mitochondria or nuclei of section Flavi. Alternatively, however, topological differences could
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arise due to sampling error, as mitochondrial genes contain few sites relative to nuclear genes,

for example.

Cluster analyses based on net RSCU values demonstrated that interspecies similarities in patterns
of CUB differ between nuclear and mitochondrial genomes. Despite some parallels in predicted
grouping—for example, the grouping of 4. caelatus and A. pseudocaelatus in both dendrograms
—mitochondrial and nuclear cluster analyses displayed groupings largely inconsistent with each
other. It is important to note that all the species included in this study have similar mean values
of codon usage metrics (ENc, GC content, and GC3s) within the nuclear and mitochondrial
genome. Thus, well-resolved interspecies relationships are unlikely to be based on codon usage
indices alone. Alternatively, the observed incongruence may reflect different pressures governing

CUB in mitochondrial compared to nuclear genomes.

Examination of codon usage patterns using correspondence analyses showed that differential
usage of certain codons drives observable differences in signatures of CUB between
mitochondrial and nuclear genes and between gene type in mitogenes. Differential usage of
specific codons between nuclear and mitochondrial genomes appears to rely heavily on the GC
content of the third position of synonymous codons. This pattern aligns with overall GC content
of the genomes. For example, the use of the codon AUA contributes to the placement of the
mitogenomes in quadrant II of the final correspondence analysis plot, where mitogenes tend to
cluster, while the use of AUC contributes to the placement of the nuclear genes in quadrants I
and IV. The average RSCU values of AUA and AUC are 1.6304 and 0.1782 in the mitochondria

and 0.4525 and 1.4760 in the nucleus, respectively. Both of these codons code for isoleucine, yet
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mitogenes are enriched for the AUA codon and nuclear genes for the AUC codon, as would be
expected based on the differences in GC content between the two genomes. The separation of
mitogenes is also dependent on the GC content of the third position. Figure 6 shows that, while
the use of most codons is similar amongst all mitogenes, the occurrence of a rare G- or C-ending
codon drives separation based on CUB patterns. This is especially clear in the case of the
outlying A. avenaceus atp8 gene in Figure 6A, which is driven by the higher use of codons ACC,
UCC, and CCG. Despite a high degree of sequence conservation with the other 19 ap8
nucleotide sequences (Supplementary File S3), the change in a small number of nucleotides at
third codon positions results in a large visible separation in the correspondence analysis plot
(Figure 6A). This effect is amplified due to the short, highly conserved nature of the atp8 gene
sequences. Overall, we found that gene-level RSCU values allow for observable differences in

CUB pattern based on the organelle of genomic origin and mitogene identity.

We also sought to determine the relative importance of neutral processes and natural selection on
shaping CUB in mitochondrial and nuclear genomes. Based on ENc-GC3 plots, most mitogenes
fell at least 20% from the neutral expectation, while most nuclear genomes fell within 10% of the
neutral expectation. These results reinforce previous findings that CUB varies at the gene-level
within a species (Sharp et al. 1988; L et al. 2004; LaBella et al. 2019). Of note, studies have
shown that greater divergence from the neutral expectation is moderately associated with
increased expression (Tsankov et al. 2010). Future avenues may examine the association

between the large residuals from the neutral expectation and expression levels of mitogenes.
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The moderate to poor fit to the neutral expectation for nuclear and mitochondrial genes,
respectively, suggests that mutational bias alone cannot account for the observed patterns in
codon usage bias. By using the S-test to test for the influence of translational selection, we found
that gene-level codon usage in mitochondrial genomes could not be significantly distinguished
from neutral mutational bias—including both selectively neutral changes and purifying
selection—in section Flavi, while translational selection acts moderately on codon usage bias in
nuclear genomes. The lack of significant translational selection on mitogenomes is unsurprising,
given their extreme GC bias and small size. This may be a manifestation of mtDNA evolving
clonally with limited ability to recombine; thus, CUB is more likely to reflect mutation bias and
drift rather than selection. The faster evolutionary rates of mitogenomes may lead to genetic drift
playing a larger role in shaping CUB than in corresponding nuclear genomes. Additionally, when
genome size is small, it is hypothesized that low tRNA redundancy limits the ability of selection
to act on CUB (dos Reis et al. 2004). Of note, S-value calculation for mitogenes was limited to a
dataset of 16 genes. Visual inspection of the data used to determine the S-values suggests a
general positive correlation between selective pressure and codon usage — which would suggest
translational selection on codon usage — that is obscured by a couple outlier genes (Figure 8A).
This observation in combination with the highly variable codon usage between mitochondrial
genes suggests that the balance between selective and neutral forces on mitochondrial codon
usage may vary greatly between mitogenes. Finally, the final S-value calculations for
mitogenomes were based solely on the mitochondrial tRNA counts derived from genomic
sequences and not experimental tRNA abundances. In fact, our analysis suggests that additional
tRNA dynamics, such as modification or importation, may be at work in Aspergillus

mitochondria.
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Computational analysis of codon usage and tRNA composition in Aspergillus mitogenomes
suggests that there is a significant gap in our knowledge of tRNA dynamics within these
organelles. It is known that mitochondria can employ diverse strategies to obtain a complete and
functional set of tRNAs; some organisms such as the fungus Saccharomyces cerevisiae encode a
complete set of tRNA genes within their mitochondria (Salinas-Giegé et al. 2015) while others
require the importation of nuclear tRNAs into the mitochondria (Alfonzo and S6ll 2009). Our
analysis demonstrates that , 15 codons cannot be decoded by the mitochondrial tRNAome
without invoking liberal wobble base pairing, mitochondrial tRNA modification, or import of
nuclear tRNAs(Supplementary File S4). This suggests that tRNA import or modification may be
occurring in Aspergillus mitochondria. Additionally, mitochondrial codon usage is not
consistently biased towards codons matching the mitochondrial tRNAome. For example, the
codon GCA (alanine), which can be decoded by a mitochondrial tRNA, has an average RSCU
value of 1.4222 in mitogenomes, whereas the codon GCU (also alanine) has an average RSCU
value of 2.3423 even though the mitochondrial tRNAome is unable to decode this codon. The
preference for GCU codons suggests the importation or modification of a tRNA capable of
decoding this codon. Finally, the Aspergillus mitochondrial tRNAs fit the wobble versatility
hypothesis for each codon family, with the exception of CGN (arginine), UGR (tryptophan), and
AUR (methionine), a finding that is consistent with previous investigation of the wobble
nucleotide position in fungal mitogenomes (Supplemental File S5) (Carullo and Xia 2008). That
1s, the anticodons of the mitochondrial tRNAome have nucleotides at the wobble site that
maximize versatility in wobble base pairing as opposed to maximizing Watson-Crick base

pairing with the most frequently used codon within each synonymous codon family. Improving
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our understanding of Aspergillus mitochondrial tRNA dynamics will not only allow us to better
understand translational dynamics within the organelle but recent work has suggested that

mitochondrial tRNAs may play a role in antifungal response (Colabardini et al. 2022).

Despite a limited understanding of tRNA dynamics within Aspergillus mitochondria our results
are consistent with the limited role of translation selection in shaping general patterns of
mitochondrial codon usage in other species including budding yeasts, plants, and animals
(Kamatani and Yamamoto 2007; Jia and Higgs 2008; Zhou and Li 2009). As with previous
work, we also noted a few specific codons (proline codons) and genes (afp8) with increased

biases that may be related to factors such as wobble-decoding or tRNA abundance.

In summary, analysis of mitochondrial and nuclear genome data from Aspergillus section Flavi
revealed that both genomes are largely phylogenetically congruent and that the pattern and
evolutionary forces shaping CUB differ between the mitochondrial and nuclear genomes. These
evolutionary analyses, coupled with the generation of mitogenome assemblies for 18 section

Flavi species, contribute to our understanding of genome evolution in the genus Aspergillus.

Data Availability Statement
The newly assembled Aspergillus section Flavi mitogenomes from this study are available in

GenBank under accession numbers ON833077, ON833078, ON&833079, ON833081, ON833082,

ONB&33083, ON833084, ONB&33085, ON833086, ONB&33087, ONS&33088, ON833089,

ON833090, ON833091, ON833092, ON833093, and ON833094. Reannotations for previously

assembled mitogenomes are available through figshare (10.6084/m9.figshare.20412186). The
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SRA accession numbers for whole genome sequencing data used for mitogenome assembly are
provided in Table 1. For previously assembled mitogenomes, the NCBI reference sequence
GenBank accession numbers are provided in place of SRA accession numbers. Additional data,
including supplementary data, are available through figshare

(https://doi.org/10.6084/m9.figshare.20412186).
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Table 1: Summary of sources of sequencing data. Reference mitochondrial genomes were

used for Aspergillus sojae, A. oryzae, and A. niger. Raw paired-end whole genome sequencing

reads were used for the remaining species.

Species SRA Accession/ Source
NCBI Reference Sequence
GenBank

Aspergillus flavus SRR18725159 Hatmaker et al. 2022
Aspergillus transmontanesis SRR8398939 Kjerbelling et al. 2020
Aspergillus arachidicola SRR8398876 Kjerbelling et al. 2020
Aspergillus nomiae SRR19369914 Hatmaker et al. 2022
Aspergillus parasiticus SRR8840397 Kjerbelling et al. 2020
Aspergillus sergii SRR8840616 Kjerbelling et al. 2020
Aspergillus sojae AP014506.1 Sato et al. 2011
Aspergillus oryzae NC 008282.1 Machida et al. 2005
Aspergillus minisclerotigenes SRR8398929 Kjerbelling et al. 2020
Aspergillus caelatus SRR8840396 Kjerbelling et al. 2020
Aspergillus pseudocaelatus SRR8840541 Kjerbelling et al. 2020
Aspergillus pseudotamarii SRR8840579 Kjerbelling et al. 2020
Apsergillus tamarii SRR8840604 Kjerbelling et al. 2020
Aspergillus pseudonomiae SRR8840540 Kjerbelling et al. 2020
Aspergillus bertholletius SRR8398880 Kjerbelling et al. 2020
Aspergillus alliaceus SRR8396970 Kjerbelling et al. 2020
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Aspergillus coremiiformis SRR8398877 Kjerbelling et al. 2020
Aspergillus leporis SRR8398928 Kjerbelling et al. 2020
Aspergillus avenaceus SRR8839916 Kjerbelling et al. 2020
Aspergillus novoparasiticus SRR8398934 Kjerbelling et al. 2020
Aspergillus niger NC 007445.1 Juhasz et al. 2008

937
938  Table 2: Mitochondrial and nuclear Aspergillus genomes differ greatly in size, genomic

939  content, and GC bias. The summary above includes ranges of values from 20 Aspergillus

940  section Flavi species’ mitochondrial and corresponding nuclear genomes.

Genome length rRNAs tRNAs | CDS GC%

Mitogenom 29.100-39.269 |2 26 15-17 24.9-26.9%
es Kbp
Nuclear 30,1001-40,900 Undetermin | 228- 9,078- 43-48.8%
Genomes Kbp ed 272 14,216

941
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943

944
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Figure Legends

Figure 1: The typical Aspergillus section Flavi mitogenome is a circular DNA molecule.
Here, the circularized mitogenome of Aspergillus flavus NRRL 1957is visualized. The blocks
around the outer circle indicate genes color coded by function. Each assembled section Flavi
mitogenome shared a conserved set of 14 core mitochondrial genes, 2 rRNA genes, and 25-27
tRNA genes in the order pictured above. GC content (26.2% overall ) is illustrated as the interior

circle’s gray region.

Figure 2: Aspergillus section Flavi mitogenomes demonstrate conserved gene content and
order. Synteny plot of Aspergillus section Flavi mitochondrial protein-coding genes. Core
mitochondrial genes are universally present in section Flavi, with conserved order. Each arrow
represents a separate gene. Each line of arrows represents a different species. Connections
between species illustrate nucleotide sequence conservation, with darker connections indicating

higher similarity.

Figure 3: Phylogenies constructed from nuclear and mitochondrial data predict similar
evolutionary relationships, with minor differences in inferred topology arising amongst
more closely related species. A) Maximum likelihood phylogeny based on concatenation of
2,422 nuclear orthologs with bootstrap values from 1000 replicates. B) Maximum likelihood
phylogeny based on concatenation of 14 core mitogene sequences with bootstrap values from

1000 replicates. Numbers above nodes indicate bootstrap values.
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Figure 4: Hierarchical clustering analyses of relative synonymous codon usage (RSCU)
values of mitochondrial and nuclear protein-coding regions demonstrate different species
groupings based on mitochondrial and nuclear data. Dendrograms are colored/highlighted
by species. A) Cluster analysis based on net RSCU values of nuclear protein-coding genes B)

Cluster analysis based on net RSCU values of mitochondrial protein-coding genes.

Figure 5: Correspondence Analysis based on relative synonymous codon usage values
reveals that signatures of codon usage bias are more similar based on organelle of origin as
opposed to species of origin. A) Correspondence analysis plot of all mitochondrial (yellow) and
nuclear (purple) protein-coding genes for 20 Aspergillus section Flavi species. Each dot
represents a gene. B) Factor map of codon contributions. Location of genes in correspondence
analysis plot is driven largely by the GC content in the third position of synonymous codons used

in the gene of interest.

Figure 6: Correspondence Analysis based on relative synonymous codon usage values in
mitogenes reveals that signatures of codon usage bias are more similar based on gene
identity as opposed to species of origin. A) Correspondence analysis plot of all mitochondrial
protein-coding genes for 20 Aspergillus section Flavi species. Labels correspond to gene identity

B) Factor map of codon contributions

Figure 7: Most signatures of codon usage bias in mitochondrial and nuclear genes in
Aspergillus section Flavi deviate from the expected codon usage bias under mutation

pressure alone. A) ENc-GC3 plot for all nuclear protein-coding genes of 20 Aspergillus section
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Flavi genes plotted against the predicted neutral distribution. R* value of 0.598 indicates
moderate fit to neutral expectation. B) ENc-GC3 plot for all protein-coding mitogenes. R* value

of 0.211 indicates poor fit to neutral expectation.

Figure 8: Section Flavi mitogenomes are not under significant translational selection on
codon usage bias, but nuclear genomes display moderate translational selection. Plots of
stAl against selective pressure for all protein-coding genes of Aspergillus flavus A) Mitogenes
only. Example of insignificant translational selection on S-test (S=0.191). B) Nuclear genes only.

Example of moderate translational selection on S-test (S=0.454).
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