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Abstract:  24 

Natural selection shapes the genetic architecture of many human traits. However, the prevalence of 25 
different modes of selection on genomic regions associated with variation in traits remains poorly 26 
understood. To address this, we developed an efficient computational framework to calculate enrichment 27 
of different evolutionary measures among regions associated with complex traits. We applied the 28 
framework to summary statistics from >900 genome-wide association studies (GWASs) and 11 29 
evolutionary measures of sequence constraint, population differentiation, and allele age while accounting 30 
for linkage disequilibrium, allele frequency, and other potential confounders. We demonstrate that this 31 
framework yields consistent results across GWASs with variable sample sizes, numbers of trait-32 
associated SNPs, and analytical approaches. The resulting evolutionary atlas maps diverse signatures of 33 
selection on genomic regions associated with complex human traits on an unprecedented scale. We 34 
detected positive enrichment for sequence conservation among trait-associated regions for the majority of 35 
traits (>77% of 290 high power GWASs), which was most dominant in reproductive traits. Many traits also 36 
exhibited substantial enrichment for population differentiation and recent positive selection, especially 37 
among hair, skin, and pigmentation traits. In contrast, we detected widespread negative enrichment for 38 
balancing selection (51% GWASs) and no evidence of enrichment for selection signals in regions 39 
associated with late-onset Alzheimer's disease. These results support a pervasive role for negative 40 
selection on regions of the human genome that contribute to variation in complex traits, but also 41 
demonstrate where diverse modes of selection have shaped trait-associated loci. This atlas of signatures 42 
of different modes of natural selection across the diversity of available GWASs will enable exploration of 43 
the relationship between the genetic architecture and selection in the human genome. 44 
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Introduction  45 
Understanding how natural selection has shaped the human genome is fundamental for 46 
evolutionary genomics and medicine 1. As humans expanded out of Africa, they encountered 47 
diverse climates, underwent dietary changes, experienced demographic shifts, and mixed with 48 
Neanderthals and other hominins. The selective pressures exerted by these events shaped the 49 
genetic basis of modern human traits 2–5. Two well known examples include the strong positive 50 
selection on adult milk consumption that shaped frequencies of lactase persistence alleles 6–8 51 
and a Denisovan introgressed haplotype that contributed to high-altitude adaptation of Tibetans 52 
9,10.  Although the evolutionary histories of these and several other specific loci and traits have 53 
been studied 11–14, the extent and types of evolutionary forces that have acted on the genomic 54 
regions associated with variation in the human phenome remain poorly understood.  55 
 56 
Multiple measures have been developed to infer evolutionary forces from patterns of genetic 57 
variation within and between species 15. For example, comparing human genomes to those of 58 
related species using measures like PhyloP and PhastCons enable testing hypotheses about 59 
decreases and increases in the substitution rate over evolutionary time that are often indicative 60 
of the action of negative and positive selection, respectively 16,17. Identification of clusters of 61 
variants at intermediate allele frequencies in human populations by measures such as the Beta 62 
Score enables inference of balancing selection 18,19. Similarly, measures such as FST and XP-63 
EHH rely on single nucleotide polymorphism (SNP) and haplotype structures to detect local 64 
adaptation or recent positive selection between human populations 20. It is also possible to 65 
estimate the time to the most recent common ancestor of different haplotypes and quantify the 66 
age/origin of variants using ancestral recombination graphs 21. Driven by increasing amounts of 67 
whole genome sequence data and computational power, more recent methods, such as 68 
RELATE 22 and CLUES 23, use locally constructed genealogies and ancestral recombination 69 
graphs to infer allele histories and detect recent directional selection. Other methods rely on 70 
parametric models of neutral evolution 24 or analyze patterns of singleton variants 25 that 71 
incorporate population level genomic data and GWAS summary statistics to estimate the 72 
strength of selection and evidence for directional selection 13,26. Together, these evolutionary 73 
measures capture evidence for a diverse set of evolutionary forces from signatures in genetic 74 
variation.   75 
 76 
Despite advances in these methods, which mainly focus on individual regions, mapping the 77 
evolutionary pressures on complex traits remains challenging for several reasons. First,  78 
genomic attributes that influence ascertainment and power in association studies, e.g., allele 79 
frequency and linkage disequilibrium (LD), also influence the expected distribution of many 80 
evolutionary metrics. Thus, the genomic background does not provide an appropriate null when 81 
interpreting overlaps between trait associations and signatures of selection. Second, population 82 
stratification is common in genome-wide association studies (GWASs). As GWASs became 83 
more prevalent and demonstrated that most common traits are polygenic, new trait-focused 84 
approaches to detect evidence of recent polygenic selection emerged.  Polygenic scores, which 85 
can be derived by summing across trait-associated alleles from a GWAS after weighting by the 86 
effect size, enable prediction of phenotype from genotype. Several studies computed polygenic 87 
scores across populations and interpreted systematic differences and the alleles that drive them 88 
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as evidence of polygenic adaptation 27–29. For example, human height increasing alleles 89 
identified from GWAS were found to be at consistently higher frequencies in Northern European 90 
populations compared to Southern Europeans 29. However, subsequent analyses revealed that 91 
residual population stratification in the GWASs and a resulting lack of consistent effects across 92 
populations drove the initial signatures of selection 30–34. Detecting and correcting for residual 93 
stratification is an ongoing challenge in the field. Despite these complications, some clear 94 
evolutionary patterns have emerged; regions of the genome that have been associated with 95 
complex traits, such as hair color, body mass index, waist-to-hip ratio etc., consistently show 96 
evidence of recent and directional selection 13,22,35,36.  97 
 98 
In this study, we describe a unified approach to determine enrichment for evolutionary forces 99 
acting on regions associated with variation in diverse complex traits. This approach is 100 
complementary to previous work on polygenic adaptation that focused on the traits themselves 101 
24,35,37 because we are characterizing the evolutionary history of the genomic regions that 102 
contribute to complex trait variation. To protect against biases from stratification, our approach: 103 
1) does not directly incorporate effect sizes at trait-associated regions (e.g. as in polygenic 104 
scores), 2) builds a null distribution from allele frequency and LD-matched SNPs, and 3) 105 
enables flexible enrichment testing at different association thresholds. We generate an atlas of 106 
11 evolutionary measures on regions identified from GWASs of over 900 polygenic traits 107 
(totalling 210,109 genomic regions). We find widespread enrichment for signatures of negative 108 
selection, a dearth of balancing selection, and several groups of GWASs that show distinct 109 
enrichments for signals of population differentiation and recent positive selection. By mapping 110 
the evolutionary landscape of genomic regions that underlie specific complex traits, these 111 
results reveal that human trait-associated regions have been shaped by a mosaic of different 112 
modes of selection.  113 
 114 
 115 

Results  116 

An efficient permutation-based approach to detect evolutionary forces on GWAS 117 

loci 118 
To quantify genomic signatures of diverse evolutionary forces acting on genomic regions 119 
associated with complex human traits, we developed an empirical framework that infers 120 
enrichment for diverse evolutionary signatures from GWAS summary statistics. For a given 121 
GWAS, we consider independent trait-associated genomic regions accounting for LD  (r2>0.9, 122 
GWAS p-value < 5e-8, Figure 1a).  123 
 124 
To define an appropriate background distribution for each analysis, we randomly select genomic 125 
regions matched on minor allele frequency, LD patterns, and gene proximity for each trait-126 
associated region. The matching is repeated until we have 5,000 sets that each contain the 127 
same number of genomic regions as the trait-associated regions (Figure 1b). For each 128 
evolutionary measure, we build a background distribution from each matched set. We then 129 
compare the observed trait-level evolutionary values to the background distribution and 130 
calculate an empirical p-value (Figure 1c,d). To summarize each comparison, we define the 131 
standardized evolutionary enrichment as the difference between the observed trait-level mean 132 
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and the matched-background mean divided by the genome-wide standard deviation for the 133 
evolutionary measure (Figure 1e). However, we note that any summary statistic could be used. 134 
 135 
We apply this approach for 11 evolutionary measures that detect patterns of genomic variation 136 
consistent with the action of different modes of selection, such as directional selection, 137 
balancing selection, local adaptation, and negative selection. All evolutionary measures had 138 
high coverage (83-99%) across the set of SNPs used in our study (Methods, Table 1).  139 
 140 
 141 
 142 
 143 

Evolutionary 
Measure 

Type of Evolutionary 
Force 

Time Scale  %SNPs 
covered 

ARGweaver (TMRCA) Evolutionary Origin  Human population 99% 

Beta Score Balancing Selection Human Population 99% 

PhyloP Positive/Negative 
selection 

Across species  98% 

PhastCons Negative Selection Across species  98% 

LINSIGHT Negative Selection Across species & 
Human populations 

98% 

FST afr-eas 
FST afr-eur 
FST eas-eur 

Positive Selection Human populations 99% 

XP-EHH afr-eas 
XP-EHH afr-eur 
XP-EHH eas-eur 

Positive Selection Human populations 83-86% 

Table 1: Evolutionary measures used to quantify different types of evolutionary forces on 144 

trait-associated regions. 145 
For each evolutionary measure (rows), the type of evolutionary force inferred and the 146 
corresponding time scale is given. “%SNPs covered” is the proportion of SNPs from 1000 147 
Genomes Phase III after quality control (n=9,535,059) that have an annotation for the given 148 
evolutionary measure. For FST and XP-EHH, we used the following 1000 genomes 149 
superpopulation comparisons: afr-eas, afr-eur, eas-eur. XP-EHH: cross-population extended 150 
haplotype homozygosity (EHH). TMRCA: time to most recent common ancestor derived from 151 
ARGweaver.  152 
 153 
 154 
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155 
 156 
Figure 1: Computational framework for detecting enrichment for genetic signatures of 157 
evolutionary forces from genome-wide association studies (GWASs).    158 
(a) Given the GWAS of a complex trait, we define trait-associated regions by first identifying 159 
variants of genome-wide significance and then clumping based on linkage disequilibrium (LD; 160 
e.g., r2>0.9). For each region, we identify the maximum value of an evolutionary measure of 161 
interest. (b) For each trait-associated region, we identify 5,000 randomly selected genomic 162 
regions (“matched regions”) that have similar minor allele frequency and linkage disequilibrium 163 
patterns (Methods). (c) Across the trait-associated regions and their matched random genomic 164 
regions, we calculate a summary statistic. To illustrate our approach, we take the mean of the 165 
evolutionary measure to generate an (d) empirical background distribution and (e) calculate 166 
enrichment by comparing the mean observed evolutionary measure to the mean of the matched 167 
background distribution. We divide by the standard deviation of the evolutionary measure 168 
across the genome to standardize the enrichment. However, any summary statistic of interest 169 
could be used. 170 
 171 
 172 
Evolutionary signals are consistent across multiple GWASs for height 173 
To evaluate the robustness of our computational framework against potential differences in 174 
GWAS size, population, study design, and analysis strategy, we compared four GWASs 175 
performed in UK Biobank individuals for standing height (Table 2): Berg-2019 30, Neale-2017 38, 176 
GIANT-2018 39, and Loh-2018 40. The four studies were selected to represent different 177 
methodological approaches. They were conducted in either unrelated white British individuals 178 
(Berg-2019, Neale-2017) or a more broadly defined population of European ancestry (GIANT-179 
2018, Loh-2018). The Berg-2019 dataset is not corrected for population stratification, since they 180 
were evaluating its effects. The Neale-2017 and GIANT-2018 studies used ten genetic principal 181 
components while the Loh-2018 study used a linear mixed model (BOLT-LMM, 41) shown to be 182 
robust against population stratification. The GIANT-2018 meta-analysis had the largest sample 183 
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size with 700K individuals whereas the other three had sample sizes of 335-460K individuals. 184 
The number of independent regions based on our LD-pruning approach increased with sample 185 
size except for the linear mixed model from Loh-2018 (n=6,903), which was the highest (Table 186 
1). A Benjamini-Hochberg p-value correction (p.adj) was performed across 11 evolutionary 187 
measures for each GWAS.  188 
 189 
Regions associated with height were enriched for signatures of negative selection (e.g. 190 
LINSIGHT, PhyloP, PhastCons) and differentiation between human populations (FST) in each of 191 
the four GWASs (p.adj < 0.05, Figure 2a). Overall, nine out of the 11 evolutionary measures had 192 
statistically significant deviations from the expected values (Figure 2a). These patterns relative 193 
to the background distributions were consistent across all GWASs and evolutionary measures. 194 
However, some measures (e.g. ARGWeaver, Beta Score, FST) showed greater variability for the 195 
mean observed trait value and background distributions than others (e.g. LINSIGHT, PhyloP, 196 
PhastCons). The two evolutionary measures (XP-EHH afr-eas and XP-EHH eur-eas) for which 197 
the statistical significance of the deviations from the background is not maintained across all 198 
four GWASs both measure population differentiation, and the two GWASs that do not show 199 
significant deviations (Neale-2017 and Berg-2019) both only include white British individuals.  200 
 201 
We also randomly sampled trait-associated regions from the Loh-2018 GWAS without 202 
replacement to evaluate how evolutionary patterns varied based on the number of trait-203 
associated regions. Across measures, we found that the background distribution and trait-204 
associated value converged rapidly with an increasing number of trait-associated regions 205 
(Supplementary Figure 1).  206 
 207 
These results also demonstrate the importance of matching the background distribution to the 208 
regions studied. For example, the observed Beta Scores for the Loh-2018 and GIANT-2018 209 
regions are very different in magnitude (Figure 2a). Nonetheless, they are both similarly low 210 
compared to their appropriate background distributions. However, if the Beta Score values for 211 
GIANT-2018 had been compared to the Loh-2018 background distribution, we would have 212 
come to the opposite and incorrect conclusion that they were significantly higher than expected. 213 
Overall, these results suggest that our approach is robust across GWASs and not substantially 214 
affected by their methodological differences. 215 
 216 
Some evolutionary signals vary across effect size 217 
Based on evolutionary theory and recent observations 13, we expect stronger signatures of 218 
selection at regions with higher effect sizes. Thus, we stratified the trait-associated regions from 219 
the Loh-2018 GWAS into five bins with equal number of regions based on the GWAS effect size 220 
at each lead SNP. We observed several trends. Evolutionary measures of negative selection 221 
(LINSIGHT, PhastCons, PhyloP) had similar values and enrichment across bins (Figure 2b). In 222 
contrast, measures related to local adaptation (FST), recent positive selection between human 223 
populations (XP-EHH), and balancing selection (Beta Score) had the highest values in bins with 224 
the smallest effect size (Figure 2b). Evolutionary enrichment was also strongest in bins with the 225 
smallest magnitude for FST but generally similar across bins for XP-EHH (bar color, Figure 2b). 226 
When trait-associated regions were stratified by GWAS p-value instead, we generally saw 227 
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similar trends with higher evolutionary measure values and enrichment for trait-associated 228 
regions with the smallest p-values (Supplementary Figure 2).  229 
 230 
 231 

GWAS 
Name 

Stratification 
Correction 

Population  Sample Size Independent 
Genomic 
Regions 

Berg-2019 uncorrected Unrelated white British 337K 2,505 

Neale-2017 10 PCs  Unrelated white British 337K 3,598 

GIANT-2018 10 PCs  European ancestry 700K 5,230 

Loh-2018 Mixed effects 
Model 

European ancestry 459K 6,903 

Table 2: GWASs on standing height used to evaluate robustness of our approach.  232 
We used four published GWASs performed in the UK Biobank on standing height to evaluate 233 
the robustness of our approach. The year in the name is when the GWAS was published. Any 234 
correction for population stratification (“Stratification Correction”) and the specific GWAS 235 
population (“Population”) is noted. Using the same criteria for LD-pruning (Methods), we 236 
identified independent trait-associated genomic regions (“Independent Genomic Regions”). The 237 
Loh-2018 40 GWAS used a linear mixed model (BOLT-LMM) shown to be robust against 238 
population stratification 41. 239 
 240 
  241 
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 242 

243 
Figure 2: The genomic signatures of evolutionary forces are consistent across multiple 244 

GWASs of the same trait.  245 
(a) For four separate GWASs of height (y-axis), we compared the mean trait-associated values 246 
(stars) for multiple evolutionary forces (x-axis) with their corresponding matched genomic 247 
background mean values (gray dot: mean value, gray bar: 5th, 95th percentile). We calculated 248 
an empirical p-value by comparing to the matched background (Methods) and adjusted for 249 
multiple testing (FDR-adjusted p-values < 0.05 are denoted as red stars, Methods). (b) For the 250 
Loh-2018 GWAS, we partitioned the trait-associated regions based on the association effect 251 
size (Beta Coefficient) of the lead SNP into five bins with equal numbers of trait-associated 252 
regions (x-axis). Each plot represents the mean value (y-axis) for a specific evolutionary 253 
measure. Bars are colored by their evolutionary enrichment values, which were calculated as 254 
described in Figure 1d. See Table 2 and Methods for details on the four GWASs analyzed. 255 
 256 
 257 
 258 
A mosaic of diverse evolutionary forces on regions associated with complex 259 
traits 260 
To generate an atlas of evolutionary forces on complex-trait-associated regions, we analyzed 261 
the GWAS summary statistics of 972 traits (Methods). Summary statistics were downloaded 262 
from diverse sources including the Neale lab UK Biobank PheWAS (n=202 traits) 38, the GWAS 263 
Catalog (n=312) 42 , GWAS Atlas (n=297) 43, manual NCBI searches, and large consortia 264 
(Psychiatric Genomics Consortium, DIAGRAM, GIANT etc.). We applied our evolutionary 265 
enrichment computational framework to each GWAS. The resulting enrichments and trait-level 266 
statistics for eleven evolutionary measures can be downloaded from FigShare repository so 267 
researchers can explore traits of interest.  268 
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 269 
The number of trait-associated regions varied widely (mean: 183, median: 9, maximum: 5,678 270 
regions). In our evolutionary atlas, 888 out of 972 traits had at least one trait-associated region 271 
meeting genome-wide significance (GWAS p-value < 5E-8). For traits with fewer than 50 272 
associated regions, many (n=432) lacked any statistically significant evolutionary enrichments 273 
(p-value<0.05 after multiple testing correction for the number of GWAS analyzed, Methods). 274 
Therefore, we focus here on describing evolutionary trends for traits (n=290) with well-powered 275 
GWASs with 50 or more trait-associated regions.  276 
 277 
For each evolutionary measure, we counted the number of GWASs with a significant deviation 278 
from the background (p-value < 0.05 after multiple testing correction for the total number of 279 
GWAS; Methods, Supplementary Table 1). Genomic signatures of negative selection were the 280 
most prevalent: 95% of GWASs had statistically significant enrichment for PhastCons (281/290), 281 
PhyloP (222/290), and LINSIGHT (278/290). We also commonly detected signals for the other 282 
modes of selection. More than half of the GWASs had significant enrichment for local adaptation 283 
(Fst, n=152 to 194 traits), negative enrichment for balancing selection (Beta Score, n=147 284 
traits), and younger than expected allele ages (ARGweaver, n=166 traits). Significant genomic 285 
signatures for cross-population positive selection (XP-EHH) were most prevalent for the African-286 
European comparison (n=138 traits) and less prevalent between Africans-East Asians (n=37 287 
traits), and Europeans-East Asians (n=87 traits) comparisons. Though these differences may be 288 
driven in part by the bias towards European-ancestry individuals in genomic studies. 289 
 290 
To illustrate the evolutionary patterns we observed across diverse traits, we plot the results for a 291 
subset of 47 GWASs carried out using the same BOLT-LMM mixed-effects model in the UK 292 
Biobank (Figure 3a)40. We refer to this analysis as the “BOLT-LMM set” (Methods). The BOLT-293 
LMM set demonstrated the same general trends across evolutionary measures as we observed 294 
in the larger evolutionary atlas (Figure 3a, Supplementary Table 1). As examples of distinct 295 
evolutionary profiles, we highlight four traits: Age at Menarche, Sunburn Occasion (Sunburn), 296 
Hypothyroidism, and High Cholesterol (Figure 3b). Out of the four, age at menarche had the 297 
strongest enrichments for negative selection measures and negative enrichment for balancing 298 
selection and younger than expected allele ages. Sunburn’s evolutionary profile was 299 
predominantly enriched for within human population genomic signals of positive selection (Fst, 300 
XP-EHH). Hypothyroidism had signatures of both negative selection and within human-301 
population positive selection (XP-EHH). Similar to age at menarche, high cholesterol had strong 302 
signals of negative selection in addition to positive selection (FST, XP-EHH). Altogether, each 303 
trait is characterized by distinct evolutionary profiles. 304 
 305 
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Figure 3: Mosaic evolutionary architecture across 47 well-powered GWASs of human 307 
complex traits. 308 
From our evolutionary atlas of 972 GWASs, we plot a subset of 47 GWASs (BOLT-LMM set) 309 
perfomed using the same approach and from the same cohort  (Methods).  310 
(a) For each evolutionary measure (columns) and a given trait (row), we calculated the trait-311 
averaged value (x-axis, stars) and compared it with the matched genomic background 312 
distribution (gray dots: mean values, gray bars: 5th, 95th percentiles). Traits are manually 313 
grouped based on type and similarity. The number of trait-associated regions is provided in 314 
parentheses. Red stars (p.adj<0.05) represent statistically significant deviation after multiple 315 
testing correction (Methods). Results are shown for six evolutionary measures; see 316 
Supplementary Figure 3 for all 11 evolutionary measures. 317 
(b) We calculated enrichment as described in Figure 1d and highlight four traits with distinct 318 
evolutionary profiles. Spokes represent different evolutionary measures (colored by type of 319 
force) and concentric rings represent levels of evolutionary enrichment. Red dashed circles 320 
represent the expected values (i.e., no enrichment).  321 
   322 
 323 
Skin and hair traits show signatures of local adaptation  324 
Our analyses revealed strong signals of local adaptation for GWASs of hair and skin traits 325 
(Figure 3a). In the BOLT-LMM set, the GWASs for hair color traits were highly polygenic with 326 
over 1,000 trait-associated genomic regions. GWASs for skin-related traits (sunburn, tanning, 327 
skin color) had variable degrees of polygenicity (34 to 854 trait-associated regions), while the 328 
GWASs for the two balding traits had around 700 trait-associated regions. Except for the GWAS 329 
for the tanning trait, all others demonstrated strong signatures of negative selection (LINSIGHT, 330 
PhastCons, Figure 3a). They also exhibited strong genomic signatures of local adaptation (FST) 331 
across the three 1000 genomes superpopulations. Hair/skin color and tanning trait-associated 332 
regions had signatures of recent positive selection in the European superpopulation (negative 333 
XP-EHH afr-eur) compared to the African superpopulation. Meanwhile, the balding trait-334 
associated regions had evidence of recent positive selection in the African superpopulation 335 
compared to the European. Similarly, evidence of recent selection between African and East 336 
Asian superpopulations was observed for GWASs of dark hair and skin color. Recent selection 337 
between East Asian and European super populations was observed for GWASs of hair color, 338 
skin color, tanning and sunburn.  339 
 340 
 341 
Alzheimer’s disease associated genomic regions lack enrichment for selective 342 
signatures  343 
The GWASs of nearly all traits in the BOLT-LMM set had diverse genomic signatures of 344 
selection. In contrast, we observed that genomic regions associated with late-onset Alzheimer’s 345 
disease exhibited no significant enrichment for any evolutionary measure (Figure 4). This result 346 
held across five published GWASs of late-onset Alzheimer's disease. The GWASs had between 347 
19 to 132 trait-associated regions identified in European-ancestry populations: Bellenguez 44, 348 
Marioni 45, Kunkle 46, GRACE47, IGAP 48. Across the 11 evolutionary measures we tested, all 349 
GWASs had trait-associated evolutionary values that overlap the expected range from their 350 
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matched backgrounds (p>0.05, Figure 4). Consequently, we did not detect any genomic 351 
signatures of enrichment across the evolutionary measures we tested. Thus, we hypothesize 352 
that genomic regions associated with late-onset traits may be less likely to have strong 353 
signatures of selection.  354 
 355 

 356 
 357 
Figure 4: Loci for late-onset Alzheimer's disease lack enrichment for evolutionary forces.   358 
Across five GWASs conducted on Alzheimer’s Disease (y-axis), we plot the trait-averaged value 359 
(red or black stars) across evolutionary measures (x-axis) compared to their matched genomic 360 
background values (gray bars, 5th, 95th percentiles. We did not find any significant enrichment 361 
for any evolutionary measures (p.adj<0.05 with multiple testing correction, Methods). This 362 
pattern held across all five GWASs considered. This suggests that genomic regions contributing 363 
to the development of Alzheimer’s Disease are not enriched for specific evolutionary forces.   364 
 365 
 366 

Discussion  367 
Natural selection has influenced patterns of variation in genomic regions associated with many 368 
human complex traits. However, the role of different modes of selection and the extent of their 369 
influence on genomic regions associated with complex human traits remain challenging to 370 
study. Here, we couple the availability of summary statistics from 972 GWASs with 11 371 
evolutionary statistics to identify enrichment for different evolutionary forces on genomic regions 372 
that contribute to variation in the human phenome. Our empirical approach quantifies 373 
enrichment compared to background genomic regions matched to those identified for each trait. 374 
The analysis pipeline can flexibly incorporate any evolutionary measure with genome-wide SNP 375 
level annotation and quantify a trait-level summary and enrichment. We make our evolutionary 376 
atlas and efficient open-source software available for the research community 377 
[PLACEHOLDER_REF].   378 
 379 
We observe several consistent trends across regions associated with diverse complex traits. 380 
Signatures of negative selection, both within and between species, are enriched among variants 381 
associated with nearly all complex traits. This indicates that, as expected, trait-associated 382 
variation is enriched in functional regions with significant evolutionary constraint. We also 383 
consistently observe significantly younger ages for trait-associated alleles, which suggests that 384 
recent variants make a substantial contribution to the common-variant mediated variation in 385 
most complex traits. We also observe enrichment for signatures of differentiation/positive 386 
selection between populations for a substantial fraction of traits, most notably those involved in 387 
hair, skin, blood measurements, and the immune system. This is consistent with recent 388 
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population-specific adaptation driven by these traits with particular relevance to survival in new 389 
environments 11. Overall, regions associated with most traits show strong enrichment for 390 
multiple evolutionary patterns, suggesting that a mosaic of selective pressures commonly 391 
shaped variants associated with complex traits.  392 
 393 
Our approach generalizes the common strategy of analyzing evolutionary forces on individual 394 
loci of interest to comprehensively characterize all regions associated with a trait. This region-395 
focused approach has several advantages. Previous empirical work (Labella 2020, 14,35 has 396 
shown the promise of quantification of region-level pressures to understand evolutionary forces 397 
on a handful of traits and interpret associated loci. Calculating a standardized enrichment for 398 
each trait and measure from an appropriate background enables us to compare across different 399 
evolutionary measures and, consequently, generate evolutionary profiles across GWASs of 400 
different traits. Our findings are consistent with several recent genome-wide analyses that use 401 
different approaches and identify widespread global differentiation 35, negative selection 13, and 402 
polygenic adaptation 49 on complex traits.  403 
 404 
Differences in the average polygenic risk score between populations and the correlation 405 
between polygenic risk scores and geographic clines 27–29 or time 49 have been used to argue for 406 
polygenic adaptation on traits such as height. However, such approaches can yield false 407 
signatures of adaptation due to inflated differences arising from population stratification in the 408 
GWASs 30,31,50. Our approach is distinct from and complementary to recent methods for 409 
detecting polygenic selection from GWAS in several key aspects. First, it separates the 410 
identification of genomic signatures of different evolutionary forces from the trait(s) that drove 411 
the selection. While both are challenging problems, identifying the specific traits driving 412 
selection is not necessary to infer that selection occurred in genomic regions associated with 413 
these traits. Rigorous detection of polygenic adaptation would require detailed phenotypic and 414 
environmental measurements over time and/or across different populations. The difficulties 415 
accounting for stratification in previous studies of height illustrate these challenges. Such an 416 
approach is not currently possible at scale since both modern and ancient phenotype data are 417 
very sparse for most traits and many of these pressures happened deep in our evolutionary 418 
history. Thus, our atlas provides a complementary high level overview of the currently 419 
detectable evolutionary forces on genomic regions that underlie complex traits. We anticipate 420 
that this can help generate hypotheses about which traits may have experienced different 421 
selective pressures. 422 
 423 
A second major difference is that we do not directly consider effect size or direction inferred 424 
from GWAS therefore reducing the potential effect of inflated or unstable estimates between 425 
populations. However, we note that effect size is indirectly taken into account in the selection of 426 
genomic regions that are associated with a trait. Nonetheless, our framework enables us to 427 
evaluate the relationship between effect size and evolutionary signatures of selection (Figure 2). 428 
We observe for height that the most extreme scores and strongest enrichment for evolutionary 429 
measures focused on differences between human populations (FST, XP-EHH) occur at lower 430 
effect sizes.  431 
 432 
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Third, by summarizing the distribution of evolutionary measures at the local region and then 433 
genome-wide level, we obtain a richer characterization rather than considering a single tag 434 
SNP, which may be subject to substantial variation and not truly causal. Moreover, this allows 435 
us to build an appropriate background distribution. This is especially important, since the 436 
strength of selection is not uniform but often varies based on functional annotations across the 437 
genome 13 51. We are also able to corroborate observations by incorporating multiple 438 
evolutionary measures capturing similar evolutionary forces (e.g., PhyloP, PhastCons, 439 
LINSIGHT). Finally, our framework flexibly considers many different evolutionary forces, not just 440 
adaptation. We are also able to compare the enrichment for signatures of selection across traits 441 
and effect sizes.  442 
 443 
Our approach also has some limitations. First, as noted above, if the goal is to find traits under 444 
selection, then identification of selection acting on genomic regions associated with a trait does 445 
not necessarily imply that selection acted on the trait itself. Linking genomic signatures of 446 
selection to traits is complicated by pleiotropy, especially antagonistic pleiotropy, e.g., regions 447 
associated with heart disease and lifetime reproductive success exhibit antagonistic effects 52. 448 
Furthermore, the omnigenic model suggests that pleiotropy is extremely pervasive across 449 
human traits 53; thus, attributing the contributions of selection on different genomic regions to 450 
individual traits is likely to be a considerable challenge. Second, rare variants contribute to 451 
variation in many complex traits 54, and our use of GWAS data limits our analyses to relatively 452 
common variants. Nonetheless, our approach can be used to analyze known rare variants, and 453 
increasing GWAS sample sizes are enabling the detection of effects for increasingly rare 454 
variants. Finally, given the limited availability of GWAS data from non-European populations 55, 455 
we have focused on trait-associated regions identified in Europeans. 456 
 457 
The flexibility of our approach enables several future directions. As new evolutionary measures 458 
are developed, they can easily be integrated into our framework. Evolutionary enrichment at the 459 
trait level can be used to better understand pleiotropy and whether the enrichment varies across 460 
functional regions of the human genome for a given trait. As more diverse GWASs conducted in 461 
non-Europeans become available, our framework can be used to compare genomic signatures 462 
of selection across human populations. This will enable additional tests for evidence of 463 
polygenic adaptation, such as heterogeneity among loci and non-parallelism between replicated 464 
populations 56. Additionally, our framework  is not limited to the human species; the same 465 
approach can be applied to GWAS conducted in any species such as mice 57, non-human 466 
primates 58, or fungi 59. In summary, our quantification of genomic signatures of selection on 467 
trait-associated regions advances our understanding of the genetic architecture of complex 468 
traits and illuminates the diverse forces that have shaped functional regions of the human 469 
genome.  470 
 471 
 472 

Methods  473 
 474 
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Detecting genomic signatures of evolutionary forces from summary statistics  475 
Our empirical framework to detect evolutionary signatures relies on building a matched 476 
background to compare trait-associated regions. For a given trait, we identify independent trait-477 
associated regions by pruning using LD (r2≥0.9), genomic distance ≤ 500 kbases, and GWAS 478 
p-value < 5E-8 (Figure 1a).  This is obtained by running the --clump flag in PLINKv2 with the 479 
following parameters: --clump-kb 500, --clump -r2 0.9, --clump-p1 5E-8, --clump-p2 5E-8. We 480 
refer to the independent regions identified by LD clumping as trait-associated regions and 481 
variants with GWAS p-value < 5E-8 within the clumped regions as trait-associated variants. All 482 
genomic coordinates are GRChg37.  483 
  484 
For each trait-associated region, we match using an approach motivated by SNPSNAP 60 and 485 
described previously 14. Briefly, for each lead variant (variant with lowest p-value) in a trait-486 
associated region, we randomly select 5,000 control variants matched on the following features: 487 
allele frequency (+/-5%), LD (r2>0.9, +/-10% LD buddies, gene density (+/− 500%) and distance 488 
to nearest gene (+/−500%) (Figure 1B).  We implemented the matching as a python script. 489 
Matched variants were drawn from 1000 Genomes subset of the European superpopulation. To 490 
match on LD patterns for each trait-associated region, we first identified the number of trait-491 
associated variants in LD (r2>0.9) with the lead SNP. To match on LD patterns, we randomly 492 
selected a variant for each trait-associated variant in LD (r2>0.9) with the lead SNP for all trait-493 
associated regions. 494 
 495 
Next, for every evolutionary measure, we calculated a trait-level average using two steps. First, 496 
we calculate for each region (matched or trait-associated) a ‘region-average’ defined as the 497 
greatest absolute value across all trait-associated variants. For the second step, we calculate 498 
the trait-level average across all the region-averages for the trait-associated regions and each of 499 
the 5,000 matched sets, where each set includes a matched region for each trait-associated 500 
region (Figure 1c). The 5,000 averaged evolutionary values make up the background 501 
distribution that we use to compare the trait-average evolutionary measure value (Figure 1d). 502 
We derive unadjusted p-values by quantifying the number of averaged matched evolutionary 503 
values as or more extreme than the trait-average out of the 5,000. We adjust this p-value for 504 
multiple testing in each analysis. Additionally, using this background distribution, we define 505 
evolutionary enrichment as the difference between the trait-level mean and the mean of the 506 
background distribution divided by the genome-wide standard deviation of the evolutionary 507 
measure (Figure 1e). This standardization allows us to compare the relative enrichment across 508 
different evolutionary measures. In summary, this approach starts with GWAS summary 509 
statistics and quantifies a trait-level average and enrichment for a given evolutionary measure.  510 

 511 
Source of evolutionary measures  512 
In this study, we downloaded or calculated eleven evolutionary measures (Table 1) for all trait-513 
associated and matched control variants as described in our previous study 14. Briefly, 514 
VCFTools (v0.1.14) 61 was used to calculate pairwise FST, the R package rehh(v2.0) was used 515 
to calculate XP-EHH using phase 3 1KG data. BetaScan software 19 was used to calculate Beta 516 
Score. PhyloP 62, PhastCons 100-way63, LINSIGHT 64, and Allele Age 21,65 were downloaded 517 
from their publications or the UCSC Table Browser66. 518 
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 519 
Evaluating robustness of evolutionary signatures using height GWAS summary 520 
statistics  521 
GWAS summary statistics for standing height were downloaded from four different studies 522 
(Table 2). The Berg-2019 analysis performed a linear regression with age, sex, and sequencing 523 
array as covariates on unrelated British ancestry individuals in the UK Biobank 30. We 524 
downloaded the summary statistics labeled “UKBB_noPCs” from 525 
datadryad.org/stash/dataset/doi:10.5061/dryad.mg1rr36. The Neale-2017 analysis also 526 
performed a linear regression with the first genetic 10 principal components and sex as  527 
covariates on unrelated white british individuals [cite: http://www.nealelab.is/uk-biobank/]. 528 
Summary statistics were obtained by downloading the file 529 
50_raw.gwas.imputed_v3.both_sexes.tsv  from  the “GWAS round 2” repository hosted at 530 
nealelab.is/uk-biobank. The GIANT-2018 summary statistics were obtained from a meta-531 
analysis of previous height GWAS on European ancestry combined with the UK Biobank cohort 532 
that included age, sex, recruitment center, genotyping batches and 10 genetic principal 533 
components67. The summary statistics were downloaded from: 534 
https://portals.broadinstitute.org/collaboration/giant/images/6/63/Meta-535 
analysis_Wood_et_al%2BUKBiobank_2018.txt.gz/. The Loh-2018 analysis used a linear mixed 536 
model on individuals of European ancestry from the UKBiobank 40. The height summary 537 
statistics were downloaded from https://alkesgroup.broadinstitute.org/UKBB/ (file name: 538 
body_HEIGHTz.sumstats.gz).  539 
 540 
On all four summary statistics, we applied our approach to detect genomic signatures of 541 
evolutionary forces. We calculated a trait-associated region average and the distribution of the 542 
background set and the evolutionary enrichment as described earlier (Figure 1). For each 543 
summary statistic, we corrected for multiple testing across the 11 evolutionary measures using  544 
the Benjamini-Hochberg FDR control approach.   545 
 546 
To test for effects of trait-associated p-value obtained from the summary statistics, we created 547 
quintiles with an equal number of trait-associated regions based on the GWAS summary 548 
statistics p-value at the lead SNP. We then applied our evolutionary analysis on each quintile. 549 
We repeated the same steps to test for the effect size from the GWAS summary statistics but 550 
instead created quintiles based on the beta coefficient. To test how the number of trait-551 
associated regions affected our evolutionary analyses, we randomly sampled with replacement 552 
the number of trait-associated regions to create under-sampled sets. Then for each set, we ran 553 
our evolutionary pipeline to calculate a trait-level average (Supplementary Figure 1).  554 
 555 
GWAS datasets to generate evolutionary atlas  556 
We used multiple sources to identify GWASs that were conducted in individuals of European 557 
Ancestry and had complete publically available summary statistics for all analyzed regions 558 
reported in human genome version hg19. GWASs that reported only the top hits were excluded. 559 
None of the sources required substantial authorization or approval and could be downloaded 560 
either from a web browser or via file transfer. Sources for GWASs include, but are not limited to 561 
the Neale Lab analysis of the UK-Biobank data, the GWAS Catalog, the GWAS Atlas, NCBI 562 
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searches, and major GWAS consortia such as the Psychiatric Genomics Consortium and 563 
DIAGRAM. All of the analyzed GWASs are reported in Supplemental File 1. This includes, when 564 
available, the associated PMID, and link to download the raw GWAS summary statistics.  565 
 566 
For each summary statistic, we applied our approach to detect genomic signatures of 567 
evolutionary forces as described earlier. GWASs without any significant independent regions 568 
(based on p-value and LD as described above) were not further analyzed. For all GWAS with at 569 
least one associated region we retained the summary statistics for every individual trait-570 
associated genomic region and the trait-level enrichment across the entire GWAS. To correct 571 
for multiple testing, empirical p-values across all traits for a given evolutionary measure were 572 
adjusted using the Benjamini-Hochberg FDR control approach. 573 
This data is available on FigShare reports empirical p-value only and should be adjusted 574 
accordingly for future analyses (link to be provided upon publication).  575 
 576 
BOLT-LMM GWASs subset analysis  577 
We further analyzed a subset of 47 traits, which we refer to as the “BOLT-LMM set”, whose 578 
summary statistics were generated using a mixed modeling approach 40. All summary statistics 579 
were downloaded from https://alkesgroup.broadinstitute.org/UKBB/. We ran our evolutionary 580 
analyses to calculate trait-level averages and the background distribution (Figure 3a). Empirical 581 
p-values were corrected for multiple testing across traits and evolutionary measures using the 582 
Benjamini-Hochberg FDR control method. Next we calculated the evolutionary enrichment for 583 
each trait and evolutionary measure. 584 
 585 
Late-onset Alzheimer’s disease analyses  586 
We performed our evolutionary analysis on five GWAS of the late onset Alzheimer's trait. The 587 
GWAS analyzed were collected from the following sources: Bellenguez et al. 588 
(https://doi.org/10.1038/s41588-022-01024-z), Marioni et al. (doi:10.1038/s41398-018-0150-6), 589 
Kunkle et al. (doi:10.1038/s41588-019-0495-7), GRACE 590 
(https://doi.org/10.1016/j.jalz.2019.06.4950), IGAP (doi: 10.1038/ng.2802).  The most recent 591 
GWAS (Bellenguez et al.) was reported in hg38 and converted to hg19 using the Biomart 592 
function in R using the archived Ensembl 75: Feb 2014 (GRCh37.p13). Empirical p-values were 593 
corrected for multiple testing across all five GWAS and 11 evolutionary measures using the 594 
Benjamini-Hochberg FDR control approach. 595 
 596 
 597 
 598 

Data Availability  599 
We have made both the formatted input files and the final output files (both trait and region level 600 
results) available for download on our FigShare (link to be provided upon publication). The 601 
FigShare repository contains one compressed folder per PubMed ID which contains all the 602 
associated input and output files.  603 
 604 
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 605 

Code Availability  606 
Evolutionary calculations were performed using the GSEL python package (link to be provided 607 
upon publication). Scripts with necessary data to replicate manuscripts will be provided upon 608 
publication. 609 
 610 
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Supplemental Tables 629 

 Evolutionary Atlas  
  

Annotation # Traits 
Proportion of  
All Traits (%)   

ARGweaver 166 57.2   

Beta Score 147 50.7   

LINSIGHT 278 95.9   

PhastCons 281 96.9   

PhyloP 222 76.6   

FST afr-eas 152 52.4   

FST afr-eur 194 66.9   

FST eas-eur 175 60.3   

XP-EHH afr-
eas 37 12.8   

XP-EHH afr-
eur 138 47.6   

XP-EHH eas-
eur 87 30   

     

 BOLT-LMM Set 

Annotation # Traits 
Proportion of  
All Traits (%) Enrichment (# Traits) Depletion (# Traits) 

ARGweaver 29 61.7 0 30 

Beta Score 32 68.1 0 32 

LINSIGHT 44 93.6 45 0 

PhastCons 47 100 47 0 

PhyloP 39 83 40 0 

FST afr-eas 31 66 32 0 

FST afr-eur 35 74.5 37 0 

FST eas-eur 35 74.5 35 0 

XP-EHH afr-
eas 15 31.9 5 2 

XP-EHH afr-
eur 29 61.7 24 5 
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XP-EHH eas-
eur 19 40.4 13 4 

Supplementary Table 1: Count of traits with signals of evolutionary forces.  630 
Number of traits (“# Traits``) in the full Evolutionary Atlas (top) and BOLT-LMM subset (bottom) 631 
with statistically significant enrichment for evolutionary measures (rows). Note, only traits with 632 
50 or more associated regions are analyzed within the Evolutionary Atlas. The proportion out of 633 
all traits analyzed (''Proportion of All Traits (%)”) are shown for the Evolutionary Atlas (n=290 634 
traits) and BOLT-LMM set (n=47 traits). Depletion refers to negative enrichment.  635 
 636 
 637 

 638 

  639 
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Supplemental Figures  640 

 641 

642 
 643 
Supplemental Figure 1: Evolutionary signatures converge rapidly with increasing number 644 
of trait-associated genomic regions.  645 
Using the Loh et. al. GWAS, we randomly undersampled the number of trait-associated regions 646 
without replacement (x-axis) and measured the mean evolutionary measure at trait-associated 647 
regions (blue line) and the matched background (mean: black line, gray shading between 5th 648 
and 95th percentiles). The observed evolutionary measures for trait-associated regions and 649 
their relative values compared to the matched background regions are consistent across 650 
different numbers of associated loci considered.  651 

 

s 
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 652 
 653 

654 
 655 

Supplemental Figure 2: Strongest genomic evolutionary signatures occur in most 656 
significant trait-associated regions. 657 
Using the Loh-2018 (Figure2) GWAS, we partitioned trait-associated regions into five bins with 658 
equal number of regions based on GWAS p-value of the lead SNP in each region. Each plot 659 
represents the mean trait value (y-axis) for an evolutionary measure and each bar is colored by 660 
the evolutionary enrichment which is calculated as described in Figure 1d.  661 
 662 
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Supplemental Figure 3: Mosaic evolutionary architecture across 47-well-powered GWASs across 11 evolutionary measures.  
On a subset of 47 GWASs (y-axis, BOLT-LMM set), the trait-level average (red star or gray ‘x’)  for 11 evolutionary measures (x-axis)
compared to its matched background distribution (gray dots: mean values, gray bars: 5th, 95th percentiles) are displayed. The 
number of trait-associated regions is provided in parentheses. Red stars (p.adj<0.05) represent statistically significant deviation after 
multiple testing correction (Methods). This figure extends Figure 3a by including all 11 evolutionary measures considered in this 
study.  
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Supplemental Files  
 
Supplemental File 1: GWAS_SOURCE_TABLE.xlsx - This excel file contains PMID or web 
link and the source for each GWAS summary statistics analyzed in this study.  
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