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ABSTRACT Aspergillus fumigatus is the main etiological agent of aspergillosis. The antifungal
drug caspofungin (CSP) can be used against A. fumigatus, and CSP tolerance is observed.
We have previously shown that the transcription factor FhdA is important for mitochondrial
activity. Here, we show that FhdA regulates genes transcribed by RNA polymerase II and III.
FhdA influences the expression of tRNAs that are important for mitochondrial function
upon CSP. Our results show a completely novel mechanism that is impacted by CSP.
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A spergillus fumigatus is a filamentous, saprophytic fungus and an opportunistic patho-
gen (1). It is the main pathogen responsible for invasive pulmonary aspergillosis (IPA),

one of the most severe infections in immunosuppressed patients in terms of morbidity and
mortality (2). The echinocandin caspofungin (CSP) is a fungistatic drug against filamentous
fungi and can be used as salvage therapy for IPA (3). It acts by noncompetitively inhibiting
the fungal b-1,3-glucan synthase (Fks1), which is required for the biosynthesis of the primary
fungal cell wall carbohydrate, b-1,3-glucan (4). However, in a certain range of higher concen-
trations, there is a reduction of CSP activity. This phenomenon, which is known as the “caspo-
fungin paradoxical effect” (CPE), results from a tolerance cellular response that alters both the
cell wall content and fungal growth (5).

A. fumigatus is a highly successful opportunistic pathogen, mostly due to its ability to
rapidly adapt to diverse environments. To this end, changes in physicochemical conditions
and nutrient availability generate signals at the cell surface that are conveyed by a system
of signaling pathways to the nucleus and converge at transcription factors (TFs) (1). TFs
regulate the transcription of gene sets that drive metabolic reprogramming to enable ad-
aptation to the new conditions and promote proliferation inside the host (6). Recently, by
screening a library of 484 TF null mutants (7), we identified FhdA (AFUB_091020), a novel
TF that plays a role in the CSP response (8). The DfhdA strain is more sensitive to CSP and
lacks the CPE (Fig. 1A), and a functional FhdA:GFP (Fig. S1; 10.6084/m9.figshare.20254623)
strain shows that FhdA is constitutively located inside the nucleus (Fig. 1B).

In order to explore the pathways affected by FhdA, we investigated its direct targets
by determining the FhdA:3xHA (Fig. S1; 10.6084/m9.figshare.20254623) binding sites using
genome-wide ChIP-seq, chromatin immunoprecipitation coupled to a DNA sequencing
analysis (BioProject ID PRJNA855589). We detected a total of 890 regions bound by FhdA
at their promoters (Fig. 1C). Most of the promoters (n = 778) were bound by FhdA before
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CSP exposure. 122 of them were constitutively bound by the TF both before and after expo-
sure to 2mg/mL of CSP (Fig. 1C). In contrast, 112 genes were bound by FhdA exclusively after
CSP exposure (Fig. 1C).

An enrichment analysis of the 778 genes bound by FhdA in control conditions suggests
that this TF is involved in the regulation of processes related to gene expression and tran-
scriptional control (Fig. 1D, upper panel), while the 234 genes bound after CSP exposure are
mostly involved in amino acid metabolism (Fig. 1D, bottom panel). Of the 122 constitutive
targets of FhdA, 15 have no feature, 29 encode proteins, 43 overlap intergenic regions bound
by the modified histone H3K9me3 previously described by our group (9), and 35 encode
tRNAs (Fig. 1E). Since tRNAs are transcribed by RNA polymerase III (PolIII), these results suggest
that FhdA modulates the expression of not only genes transcribed by RNA polymerase II
(PolII) but also genes transcribed by PolIII.

FhdA is important for mitochondrial respiratory function (8). We analyzed the 29 protein
coding genes bound by TF using MitoProt (https://openebench.bsc.es/tool/mitoprot_ii), which

FIG 1 FhdA is essential to the caspofungin paradoxical effect (CPE) and binds to several targets before and after caspofungin
(CSP) exposure. (A) Radial growth of the wild-type strain (Wt, CEA17), DfhdA, and DfhdA:fhdA1 incubated for 5 days at 37°C in minimal
medium containing 0, 1, and 8 mg/mL of CSP. (B) Fluorescence microscopy of a FdhA:GFP functional strain before and after exposure
to 6 ng/mL of CSP for 30 min. Hoechst was used to dye the nuclei. (C) A Venn diagram showing the number of FhdA targets before
and after exposure to 2 mg/mL of CSP for 1 h. (D) Top 10 GO terms categorizing the genes closest to the FhdA targets before and
after CSP exposure. (E) Functional classification of the 122 targets constitutively bound by FhdA. All of the methods are described in
the Supplementary Text S1 (10.6084/m9.figshare.20254623).
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revealed 8 genes that had a mitochondrial targeting signature. These are a putative 30S
ribosomal subunit S4 (AFUB_007360), the TF LeuB (AFUB_020530), the putative ER Hsp70
chaperone BipA (AFUB_021670), the putative ABC transporter Adp1 (AFUB_073240), a
ketol-acid reductoisomerase (AFUB_034740), a putative glucosamine-6-phosphate deami-
nase (AFUB_083490), a protein predicted to bind chromatin (AFUB_096570), and a hypo-
thetical protein (AFUB_077560). It remains to be determined whether these proteins
localize at the mitochondria and how they affect CSP tolerance.

We then hypothesized that the tRNA genes controlled by FhdA could influence the
mitochondrial tRNA pool. A. fumigatus has 27 predicted mitochondrially encoded tRNA
anti-codons, with 47 codons that can be decoded from wobble or exact match pairing. That
leaves 13 codons that cannot be decoded by the mitochondrially encoded tRNAs without
tRNA modifications (Fig. 2A). 7 of these 13 codons without a tRNA encoded in the mitochon-
dria can be decoded by one of the nine tRNAs identified in the ChIP-seq experiment (Fig. 2B).

FIG 2 FhdA binds tRNA promoters, including promoters of several tRNAs that are not encoded by the mitochondrial genome. (A) The tRNAs encoded by
the mitochondrial genome and the ones that are absent from it. (B) A heat map representing the FhdA binding intensity to the 35 tRNA genes detected in our ChIP-
seq. (C) Relative synonymous codon usage (RSCU) analysis showing the number of codons differentially used for the transcription of the 5-fold upregulated and
downregulated genes detected in the RNA-seq experiment. All of the methods are described in the Supplementary Text S1 (10.6084/m9.figshare.20254623).
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We then asked if the fhdA deletion effect could be related to an altered tRNA preference.
To test for codon specific effects on nuclear gene expression, we compared the Relative-
Synonymous-Codon-Usage (RSCU), defined as the ratio of the observed frequency of codons
to the expected frequency, given that all of the synonymous codons for the same amino
acids are used equally (10), using the RNAseq data set, in which genes regulated by FhdA in
the absence or presence of CSP are 5-fold upregulated or downregulated (8). When we com-
pared the wild-type exposed to CSP with the corresponding control, genes that were 5-fold
upregulated or downregulated during exposure to CSP had lower usage of the codons, UCA,
GAA, and GGU, and higher usage of the codons, GAG and GCC. Four of these five codons are
decoded by tRNAs identified in the ChIP-seq experiment (Fig. 2C). Genes overexpressed or
underexpressed in the DfhdAmutant compared to the wild-type, both treated with CSP, were
enriched or depleted for 15 different codons in upexpressed or downexpressed genes; 8 of
these codons are decoded by tRNAs identified in the ChIP-seq, and two of these codons are
not present in the mitochondria (Fig. 2C). These results suggest that there are differences in
codon usage during the CSP response; there are about 3-fold more differences in codon usage
in DfdhA during CSP, suggesting that the combination of DfhdA and CSP affects gene expres-
sion in a codon-specific manner that may be related to changes in tRNA expression.

In summary, our results suggest that FhdA can bind to the tRNA promoter regions and
most likely collaborates with PolIII in the regulation of their expression levels. The binding
of FhdA to the tRNA promoter regions is affected by CSP, indicating that CSP can modu-
late the tRNA pool utilization and that several side effects related to CSP activity, such as a
decrease in the mitochondrial function, could be caused by the depletion of essential
tRNAs. FhdA seems to play an important roles in the control of the expression of protein-
encoding genes and in tRNA expression, suggesting that FhdA can influence RNA PolII and
RNA PolIII targets. Transcriptional regulation of tRNAs may represent a novel route of transla-
tion regulation in filamentous fungi.
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